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Complement Regulation
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Factor H discriminates host surfaces from pathogens
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Structural basis for sialic acid-mediated self-recognition by FH

C3b(D1115)

Blaum et al. Nat Chem Biol. 2015
Goicoechea de Jorge et al., Semin. Immunopathol. 2017



Structural basis for FH recognition of opsonized surfaces

Prosser et al. JEM (2007); Schmidt et al. JI (2008); Harder et al. JI (2016); Martin-Merinero et al. KI (2017)



FH “de-requlation” by the FH-related proteins
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FHRs In health and disease

Host surfaces Pathogens Altered surfaces

PROTECTION

PROTECTION

FHRs 4
ACFHR.?-CFHRI Gain-of-function FHRs ACFHRB-CFHR.I
Goicoechea de Jorge et al. PNAS 2013; 110: 4685-90. = ) o
Tortajada et al. JCI 2013; 123: 2434-2446 Altered host surfaces refer, for example, to ECM and other cell surface components modified by aging, microbial
) ’ . ' A and chemical agents, or by deposition of immunecomplexes (like those containing galactose deficient-IgA), or

%iﬁij:gzl'e;r;?r:gszgqg;unm (2015) even to iC3b, C3dg opsonised surfaces.



Complement is a major player in several diseases

Infectious diseases,
sepsis, anaphylaxis

I/R injury

Paroxismal nocturnal
hemoglobinuria

Psoriasis

Systemic lupus
erythematosus

Lipodistrofia
Transplant rejection
Multiple sclerosis
Allergic inflammation

Myasthenia gravis

Cancer j

Stroke
Alzheimer’s disease

Schizophrenia

Age-related
macular degeneration

Asthma

Myocardial infarction
[ C3 Glomerulopathy

Atypical Hemolytic
uremic syndrome

| IgA Nephropathy

Crohn’s disease

Rheumatoid arthritis

Adapted from: Ricklin D, Lambris JD. Nat Biotechnol. 2007 25:1265-75.



CFH genotype-phenotype correlations
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C3 genotype-phenotype correlations

Distinct C3 gain-of-function mutations associate with aHUS and DDD
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Mutations in C3 associated with aHUS impair regulation by MCP
Mutations in C3 associated with C3G impair regulation by FH (and CR1)

Martinez-Barricarte et al. JCI 2010; Martinez-Barricarte et al. MIMM 2015; Chauvet et al. JASN 2016



CFHRs genetic variants

* Physiopathological consequences; Genotype-phenotype correlations

« Genomic mutations; Diagnostic implications



Novel aHUS pathogenic variants in CFHR1
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Prevalence of CFHR1 mutant in aHUS
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CFHR1,40c0r296v4 1S @ recurrent variant associated with severe aHUS presentations.

r 5 5 Onset ESRD Transplants
Patient Age Gender Origin (Age) (Ame) Recurrences (Date) Current status Treatment
H209 43 Female NW-Spain 32 33 - 1 (31-07-2016) Functioning graft Eculizumab
H212 30 Female Spain 20 21 - 1 (01-03-2009) Hemodialysis Eculizumab
H323 21 Male NW-Spain 157 - 12 0 Normal renal function Eculizumab
H362 53 Male NW-Spain 49 . - 0 End-stage renal disease® Eculizumab
; . Normal renal function .
H433 25 Female N-Spain 23 - 1 0 (sCr 2.2mg/mL) Eculizumab
H527 28 Female NW-Spain 25 - 2d 0 Normal renal function Plasap h'cresm -
steroids
H671 31 Female NW-Spain 30 - 0 0 Normal renal function Eculizumab
H715 47 Female Spain 36 36 3¢ 1 (22/08/2007) Hemodialysis Eculizumab
H2057 50 Female N-Portugal 47 47 - Waiting list End-stage renal disease Plasmapheresis

%) Recurrence when eculizumab dose was reduced

®) Acute presentation triggered by a Churg-Strauss vasculitis and evolution to ESRD, despite eculizumab treatment.

©) After one year of treatment, eculizumab was discontinued in 2015. She became pregnant and had a recurrence on March 2016 requiring again
eculizumab. She gave birth in April 2016 by cesarean. Eculizumab was discontinued again August 26, 2016.

9) Onset associated with postpartum and first recurrence with pancreatitis. No clear cause for the second recurrence, which presented with neurological

symptoms.
) Onset associated with postpartum. The third recurrence was associated with a mesenteric thrombosis.

Goicoechea de Jorge et al, JASN (2017)



Mutant CFHR1 originate by gene conversion events
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Functional analysis of CFH S411T variant and mutant CFHR1
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Incomplete penetrance of aHUS in carriers of the CFHR1 mutant
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Levels of FH modulate penetrance of aHUS in mutant CFHR1 carriers.
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Exchanging C-ter regions between FH and FHR-1 is a major cause of aHUS.

1) CFH::CFHR1 hybrid
Unequal crossover (DelCFHR3-CFHR1) (Venables et al. 2006)
CFH > CFHR1 gene conversion (Heinen et al. 2005)

CFH CFHR3 CFHR1  CFHR4 CFHR2 CFHRS
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Unequal crossover Gene conversion

2) CFHR1::CFH hybrid
Unequal crossover (DupCFHR3-CFHR1) (Valoti et al. 2015)
CFHR1 > CFH gene conversion (Goicoechea de Jorge et al. 2017)



Novel CFHR1 mutant associated with aHUS (caso C. Fdez-Ribera)

Male, 54 y-old, without family history of renal disease.
2008, aHUS onset that evolved to ESRD and HD.
2009, episode of MAT with neurological involvement.

2010, Cadaveric renal TX.

g Complement study 1
g 2010, aHUS recurrence day 7 post TX.
CL(\)I 2010, No response to PE. Biopsies show progressive deterioration.
n 2010, eculizumab is finaly obtained 2mo post TX.
2
T 2010, treated for 3mo. No renal response despite hematological improvement
2010, restarts HD.
2013, graft removed.
2016, renal TX from live donor (wife), eculizumab profilaxis.
Complement study 2
2017, excellent evolution of renal function. Biopsy with normal glomeruli
COMPLEMENT STUDY 2010 COMPLEMENT STUDY 2016
CFH, CFI MCP: No complement pathogenic gene NGS panel: CFH, MCP, CFl, C3, CFB, DGKE, THBD,
variants CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5.
C3, normal.
C4, normal Novel gene variant identifed in CFHR1 (L290V) involving
FH, normal a position that suggest a relevant functional impact.
MCP, normal
Fl, normal Purification of mutant FHR-1 protein and fuctional
anti-Factor H, negative analysis confirm pathogenicity: competion with FH for

WB analysis, normal. surface regulation.



L290V FHR-1 mutant competes FH in a sheep red cell assay
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Structural basis for sialic acid-mediated self-recognition by FH

v

Blaum et al. Nat Chem Biol. 2015
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Structural basis for the competition between FHR-1(L290V) mutant and FH

S1191L substitution closes the sialic acid pocket

The L290V substitution reverses this situation returning to
a more FH-like conformation

Sialic acid

Brown: FH SCR20; Blue: FHR-1 SCR5; Pink: FHR-1 SCR5 (L290V)



Exchanging C-terminal regions between FH and FHR-1 is pathogenic

Normal host aHUS ﬂ‘.
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The CFH-CFHRs locus
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Acrenra.ceury Protects from AMD

CFH
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USA (allele frequency)

Columbia (n=357) 0.26 Hageman et al., 2006
European

Ireland (n=170) 0.19 Hughes et al., 2006

Spain (n=269) 0.25 (Martinez-Barricarte et al. unpublished)

UK (n=238) 0.18 Holmes et al., 2013

Italy (n=49) 0.22 Holmes et al., "013
African

Nigeria (n=21) 0.55 Holmes et al., 2013

Algeria (n=29) 0.23 Holmes et al,, 2013

South Saharan (n=83) 0.34 Holmes et al,, 2013
South American

Brasil, Colombia (n=29) 0 Holmes et al, 2013
Asia

Japan (n=29) 0 Holmes et al,, 2013

China (n=50) 0.06 Holmes et al., 2013

Frequencies of A-rurs.ceuriy 1IN general, correlate well with the prevalence of AMD, IgAN and SLE.

Acrurs-crur1 also protects from C3G.

Hughes et al., Nat Genet 38: 1173-77 (2006), Gharavi et al., Nat Genet 43 321-7 (2011), Kiryluk et al., PLoS
Genetics 8: €1002767 (2011), Zhoa et al., PloS Genetics 7: €1002079 (2011), Goicoechea de Jorge, Unpublished



www.kidney-international.org clinical investigation

Elevated factor H-related protein 1 and factor H ®CmssMaﬂ(
pathogenic variants decrease complement see commentary on page 790
regulation in IgA nephropathy

1,11 2,11

Agustin Tortajada"'', Eduardo Gutiérrez”'', Elena Goicoechea de Jorge™'', Jaouad Anter’,

Alfons Segarra”, Mario Espinosa’, Miquel Blasco®, Elena Roman’, Helena Marco®, Luis F. Quintana®,
Josué Gutiérrez®, Sheila Pinto', Margarita Lopez-Trascasa’, Manuel Praga”'® and

Santiago Rodriguez de Cérdoba’

IgA nephropathy (IgAN), a frequent cause of chronic kidney disease worldwide, is characterized by mesangial deposition of
galactose-deficient IgA1-containing immune complexes. Complement involvement in IgAN pathogenesis is suggested by the
glomerular deposition of complement components and the strong protection from IgAN development conferred by the deletion of
the CFHR3 and CFHR1 genes (Acrqrs-cenri)- Here we searched for correlations between clinical progression and levels of factor
H (FH) and FH-related protein 1 (FHR-1) using well-characterized patient cohorts consisting of 112 patients with IgAN, 46 with
non-complement-related autosomal dominant polycystic kidney disease (ADPKD), and 76 control individuals. Patients with either
IgAN or ADPKD presented normal FH but abnormally elevated FHR-1 levels and FHR-1/FH ratios compared to control
individuals. Highest FHR-1 levels and FHR-1/FH ratios are found in patients with IJAN with disease progression and in patients
with ADPKD who have reached chronic kidney disease, suggesting that renal function impairment elevates the FHR-1/FH ratio,
which may increase FHR-1/FH competition for activated C3 fragments. Interestingly, Acrprs.crurt hOMozygotes are protected from
IgAN, but not from ADPKD, and we found five IgAN patients with low FH carrying CFH or CFI pathogenic variants. These data
support a decreased FH activity in IgQAN due to increased FHR-1/FH competition or pathogenic CFH variants. They also suggest
that alternative pathway complement activation in patients with IgAN, initially triggered by galactose-deficient IgA1-containing
immune complexes, may exacerbate in a vicious circle as renal function deterioration increase FHR-1 levels. Thus, a role of FHR-
1 in IgAN pathogenesis is to compete with complement regulation by FH.



Gain of function CFHRs mutations cause C3G
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“Misleading” complement regulation

Host surfaces

Goicoechea de Jorge et al. PNAS 2013; 110: 4685-90.
Tortajada et al. JCI 2013; 123: 2434-2446.

Jézsi et al. Trends Immunol (2015)

Tortajada el at KI 2017;

Pathogens

PROTECTION

MAC [\
FHR-1
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Altered host surfaces refer, for example, to ECM and other cell surface components modified by aging, microbial
A and chemical agents, or by deposition of immunecomplexes (like those containing galactose deficient-IgA), or

even to iC3b, C3dg opsonised surfaces.

Altered surfaces

PROTECTION

FHRs 4
Gain-of-function FHRs
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Benefits of genetic testing and molecular diagnostics in aHUS and C3G
In aHUS there is a clear benefit for the individual patients

It will provide you understanding of the aetiological factor, which will
reinforce diagnosis, provide information about prognosis and assist in
therapeutic decisions, including long-term treatment.

Not needed to start treatment; If you have reached a diagnosis of aHUS, initiate
treatment, then consider performing a complete complement genetics and
molecular analysis in your patient.

In C3G (and other complement-related diseases), currently the benefit for the
individual patient is questionable.

However advances in understanding of the pathology have emerged
from these analysis.

Clear benefit for the disease cohort as a whole

Goodship et al., Atypical hemolytic uremic syndrome and C3 glomerulopathy: Conclusions from a KDIGO Controversies Conference Kidney International (2016)



Genetic testing and molecular analyses

The minimum set of genes that should be screened in aHUS includes CFH, CD46, CFI, C3, CFB,
THBD, CFHR1-5 and DGKE.

Because of the frequent concurrence of genetic risk factors in aHUS, this analysis should also include
genotyping for the risk haplotypes CFH-CFHR3 and MCPggaac.

Genetic analyses must include suitable technologies to detect copy number variation, hybrid genes and
other complex genomic rearrangements in the CFH/CFHRs genomic region.

DNA sequencing

NGS analysis (We use a in house NGS aHUS/C3G panel (40 genes/Nestera/lllumina/160bp/1500x).
Sanger sequencing.

CNV analyses

MLPA (We use commercial and custom developments).
NGS (OncoCNV, Nextgene).
CGH arrays (we developed one for 1932 with high density probes).

Laboratory analyses

Protein levels
Auto antibodies
Functional analyses

Goodship et el. Kidney Int. 2017 91:539-551



Understanding genetic variants

Current level of knowledge allow experts to interpret most new genetic changes as pathogenic or not.
Expert laboratories that interpret the genetic results perform additional analyses to assist this interpretation.

Molecular pathogenicity vs functional alteration relevant to the pathology

Genetic variants are classified as ‘benign,’ ‘likely benign,’ ‘variant of uncertain significance (VUS),’ ‘likely
pathogenic,’ or ‘pathogenic’ following international guidelines.

In aHUS, pathogenic variants specifically impair the capacity to protect host endothelial cells and platelets from
complement damage.

We need to know whether a variant is pathogenic and relevant to the pathology



Conclusions |

* Genetics analyses reveal a crucial role of complement in aHUS, C3G and IgAN

* From a pathogenic point of view aHUS is very homogeneous. All pathogenic variants
associated with aHUS (including those in the CFHRSs) specifically impair the capacity to
protect host endothelial cells from complement damage.

* Underlying causes of secondary TMA are triggering factors of aHUS in carriers of complement pathogenic
variants.

* Eculizumab efficiently blocks C5 activation preventing endothelial damage independently of the complement
gene mutated.

* The overall individual predisposition to aHUS influences disease progression, responses to therapies and
recurrences after transplantation. The genetic makeup also influences recurrences after eculizumab
discontinuation.

* Genetic and molecular analyses will provide understanding of the aetiological factor, which
will reinforce diagnosis, prognosis and assist in therapeutic decisions, including long-term
treatment.



Conclusions Il

Genetics explain roughly % of C3G cases and suggests that pathogenic mechanisms in C3G
are complex and heterogeneous

In some C3G cases, associated with FH and C3 mutations, or with C3Nef, the pathogenic
mechanism likely involves massive activation of C3 in plasma.

In other C3G cases a potentially undesired FH/FHRs competition has been identified. This
alternative pathogenic mechanism likely involves uncontrolled complement activation at the
GBM.

Severe, progressing cases of IgAN may involve an potentially undesired FH/FHRs competition
with the consequence of a complement-related TMA.

Currently, the benefit of genetic analyses for C3G and IgAN patients is questionable.
However, important advances in understanding these pathologies have emerged from these
analysis.
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