
5° CONGRESO de la SOCIEDAD GALLEGA de NEFROLOGÍA

26 Y 27 DE OCTUBRE DE 2018 SEDE: AFUNDACIÓN, PONTEVEDRA

SGAN

Enfermedades renales asociadas a la activación del complemento Enrique Morales Ruiz. *Hospital Universitario 12 de Octubre Madrid*

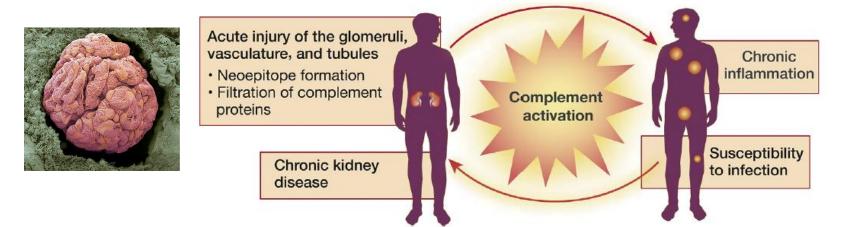
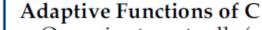
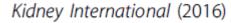



Table 1. Functions of the C cascade

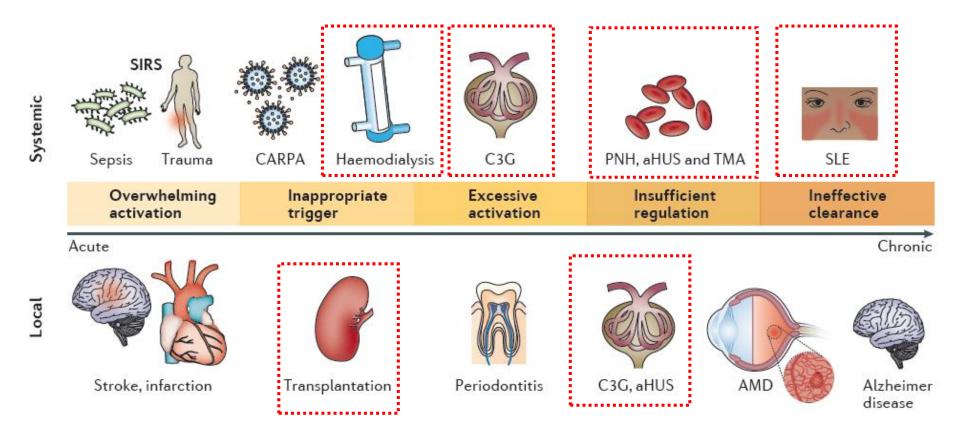
Opsonize target cells (pathogens and injured cells) Trigger vascular changes and inflammatory cell chemotaxis


- Lyse pathogens
- Provide costimulation and proliferation signals for immune cells

Remove immune-complexes and cellular debris

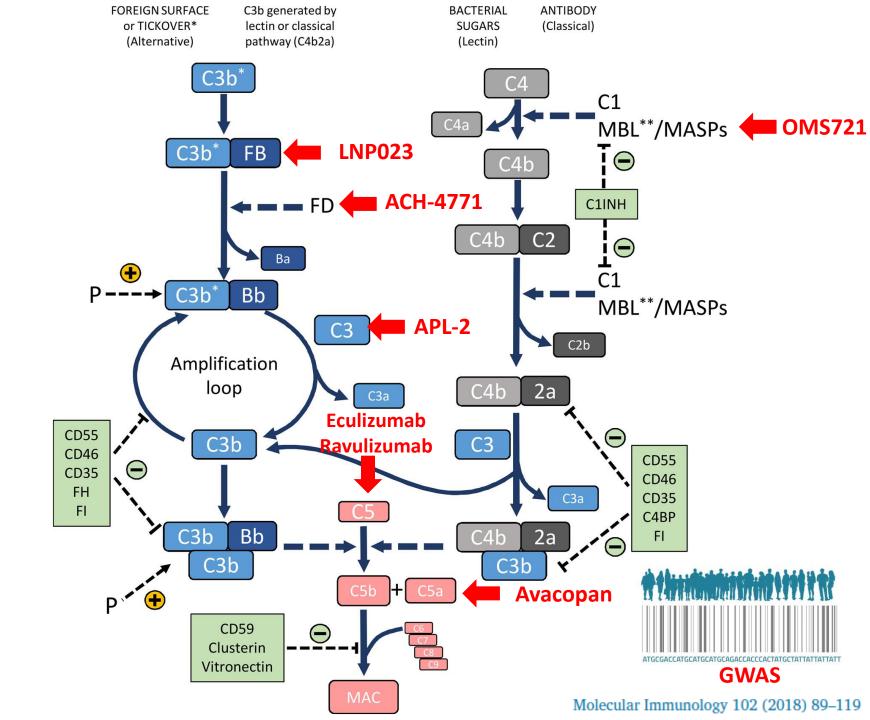
Maladaptive Functions of C

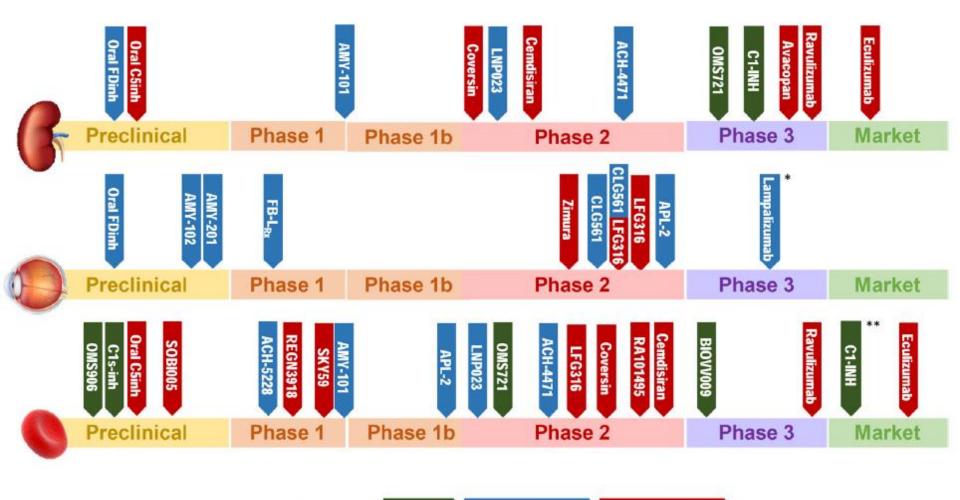
Promote tissue inflammation Directly cause injury to host cells


Mediate cancer cell immune-evasion

The renaissance of complement therapeutics

Daniel Ricklin¹, Dimitrios C. Mastellos², Edimara S. Reis³ and John D. Lambris³

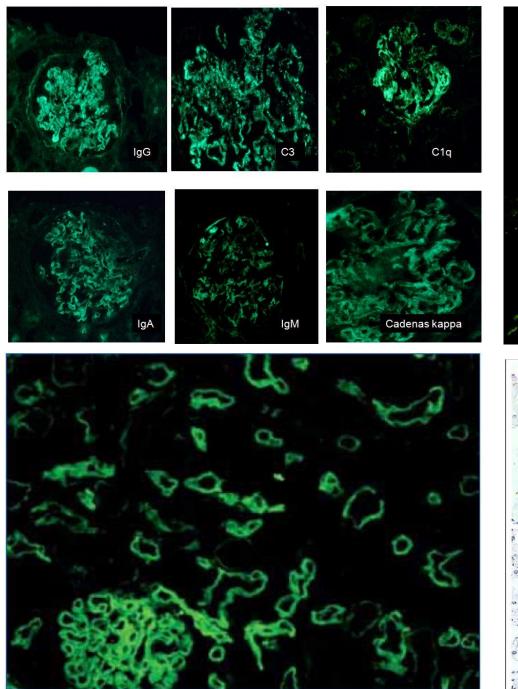


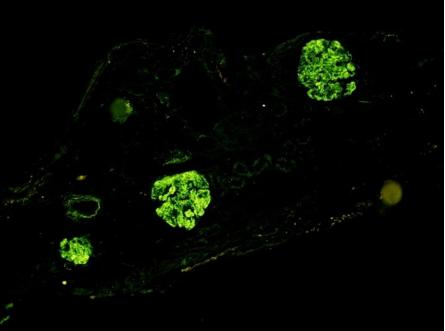

REVIEW

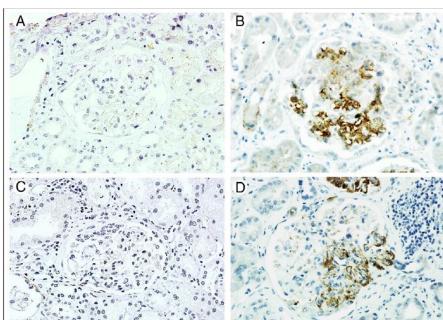
Complementopathies

Andrea C. Baines, Robert A. Brodsky *

- We will define complementopathy as a disorder in which:
 - In a number of diseases, complement plays a driving role in pathogenesis, whereas in others, complement is an 'exacerbator' of disease, inducing increased pathology initiated by a different disease trigger, thus driving inflammation and tissue damage
 - There is evidence that inhibition of complement disrupts or halts the pathogenic process of the disorder.

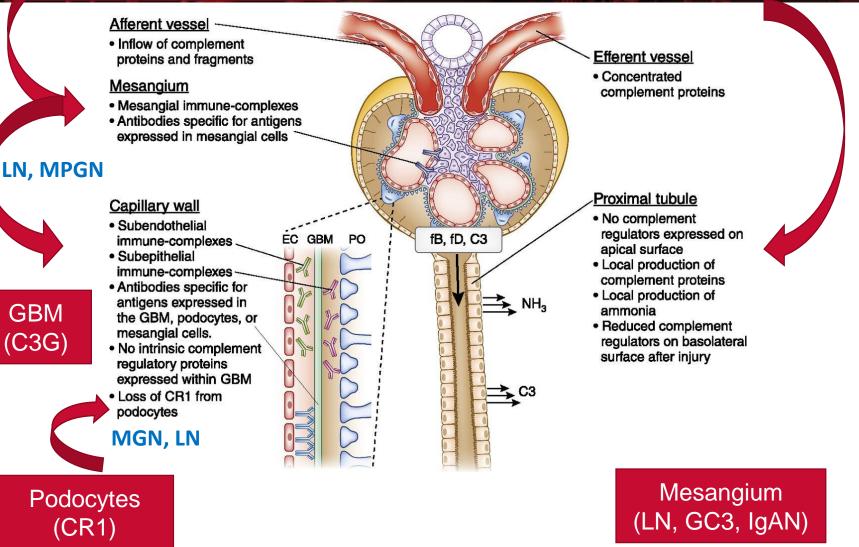



Intervention Level: Initiation Amplification Loop Terminal Effectors

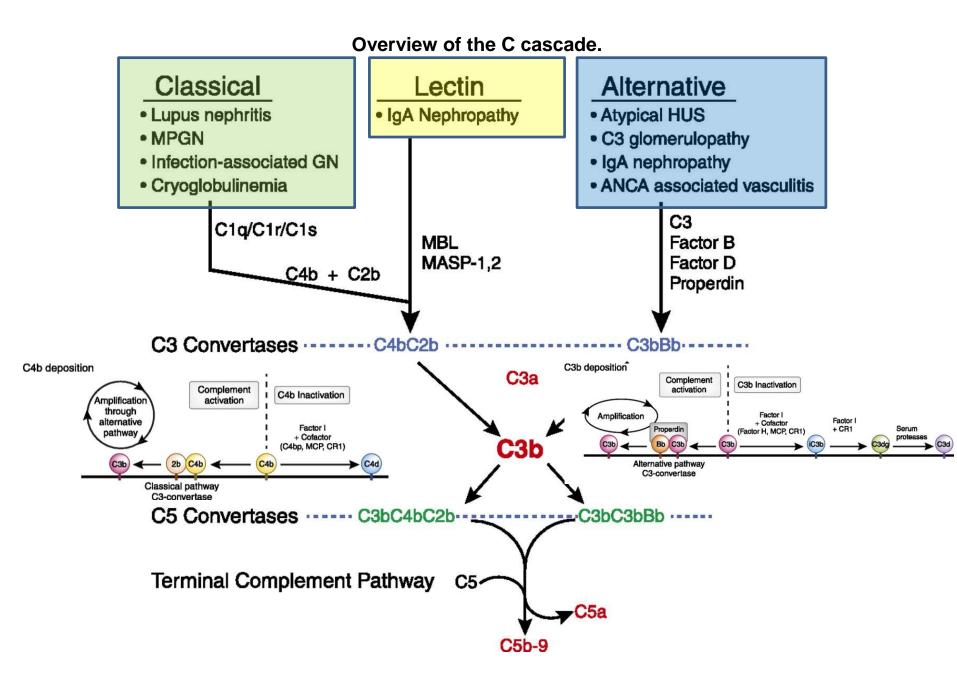


Evidence That the C System is Involved in Glomerular Diseases

- As early as the 1960s it was understood that the C system was involved in antibody-mediated glomerular injury, (A Role of Polymorphonuclear Leukocytes and Complement in Nephrotoxic Nephritis. J Exp Med 122: 99–116, 1965)
- By the 1970s C proteins were detected in renal biopsy specimens from patients with GN, (Immunopathology and glomerulonephritis. Annu Rev Med 25: 83–98, 1974)
- Experimental evidence in both animal models and in patients links the C system with a large number of glomerular diseases.


03

*


Mechanisms of C activation in glomerular diseases

Vasculature and glomerular endotelial cells (IgG, IgM, IC)

Tubulointerstitium (C3)

Joshua M. Thurman, and Carla M. Nester CJASN 2016;11:1856-1866

Joshua M. Thurman, and Carla M. Nester CJASN 2016;11:1856-1866

					Clinical
Disease	C Protein Deposits ^a	Plasma Complement Protein Level	Autoantibodies to Complement Proteins	C Gene Variants Associated with Disease	Use of Complement Inhibitors
Atypical hemolytic uremic syndrome	C3 and C5b-9 deposits have been reported (94) C1q, C4d, C5b-9, MBL, and IgM reported in some cases (62)	↓C3 ↑C5a, ↑sC5b-9	Factor H	Factor H Factor I C3 Factor B CD46 CHFR1 CFHR3 CFHR5 Thrombomodulin	✓
C3 Glomerulopathy	Dominant C3 two orders of magnitude greater than that for Ig	↓C3, ↓factor B, ↓properdin, ↓C5, ↓C7 ↑Ba, ↑Bb, ↑C3d, ↑C5a, ↑sC5b-9	C3Nefs (>75%) C3b Factor H Factor B	Factor H Factor I C3 C8 Factor B CHFR1 CFHR2 CFHR3 CFHR5 CR1	✓
Lupus nephritis	C3, C4, C1q	↓C3, ↓C4, ↓C1q	C1q, C3	C1q, C1r/s, C2, C4	1
Membranoproliferative GN	C3, C4, IgG, IgM	↓C3, ↓C4	C3Nefs	Factor H Factor I CD46	
Catastrophic antiphospholipid antibody syndrome		↓C3, ↓C4 ↑C3a, ↑C4a			\checkmark
IgA nephropathy	C3, properdin, ±C4, ±MBL	↑C3a, ↑C3d		Factor H CFHR1 CFHR3	1
ANCA associated vasculitis Postinfectious GN	C3 and Ig can be seen (95) C3, ±C4	↑C3a, ↑C5a, ↑sC5b-9, ↑Bb ↓C3, ↓C5, ↓properdin			1
Tubulointerstitial diseases	C3 on brush border	Urine iC3b, Bb, C5b-9		Clin I Am Soc	Noulus-111

. . . _

_____ Clin J Am Soc Nephrol 11: 1856–1866, 2016

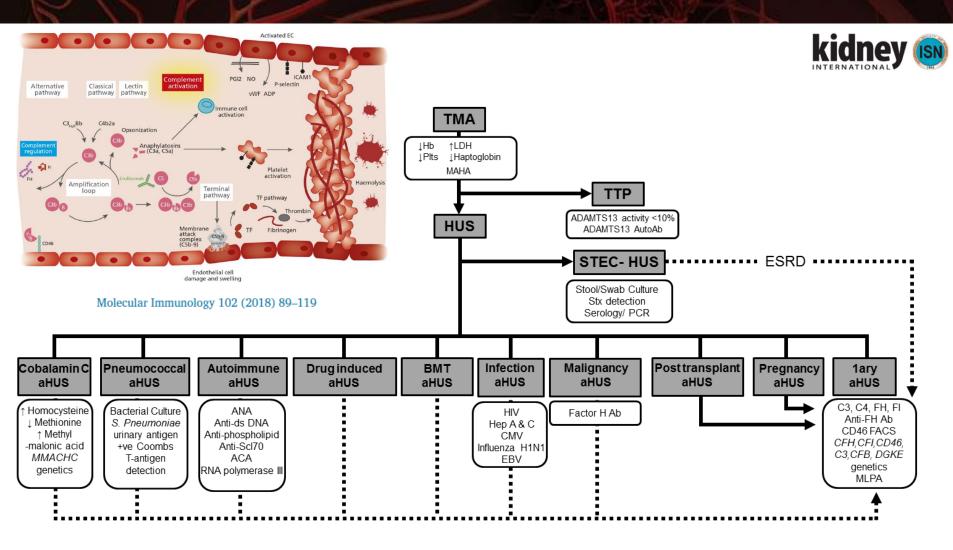
Síndrome urémico-hemolítico del adulto

J. Montoliu, A. Darnell, A. Torras, A. Botey y L. Revert

Incidencia

Seis pacientes: 2 varones 4 mujeres Edad media: 36 años (20-52)

	N.º casos	N.º tota casos
Etiología Idiopático Anovulatorios Embarazo complicado	321	6 6 6
Manifestaciones clínicas Insuficiencia Renal (Cr > 5 mg/100 cc)	6	6
Anemia hemolítica micro- angiopática	6	6
Trombocitopenia (150.000/mm ³) Hipertensión grave (TA	6	6
diastólica > 120 mmHg)	6	6
Oliguria (Diuresis < 500 cc/24 horas)	4	6
Insuficiencia cardiaca		6
Hiperreninemia	4	4
Aumento PDF Hipocomplementemia Alteraciones de la	3 4 2 1	6 6
coagulación	0	6
Sintomatología neurológica	Õ	6
Evolución Exitus	1	6
IRC terminal en hemodiá- lisis periódica	3	6
Recuperación parcial de la función renal (IRC)	2	6
Complicaciones durante la fase aguda Pericarditis Septicemia Pancreatitis	2 2 2	6 6 6


mm³ respectivamente). La hipertensión fue la forma de presentación más frecuente en nuestra serie, ya que cuatro enfermos ingresaron en el Hospital con motivo de una crisis hipertensiva. La retinopatía hipertensiva, según la clasificación de Keith y Wagener era de grado IV en tres casos, de grado III en dos y de grado II en uno. La hiperten-

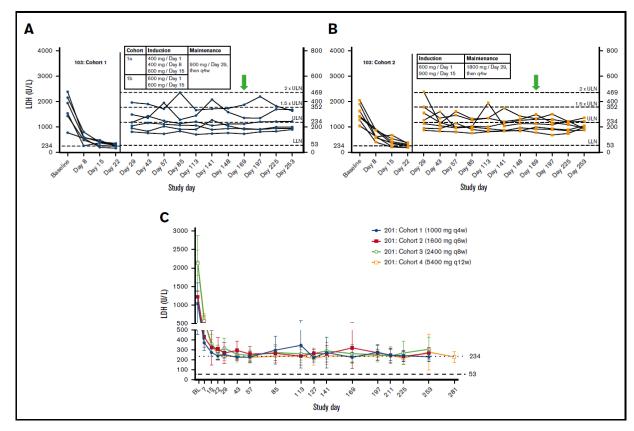
Inmunofluorescencia. En tres casos fue evidente la presencia de C3 en forma de nódulos segmentarios y focales en los capilares glomerulares. En otra biopsia la presencia de C3 se detectó únicamente en los vasos y no en el glomérulo. Sólo en un caso se detectaron cantidades variables de C1q, C4 e

Formas etiológicas del SUH del adulto

- 1. Idiopático 3,31
- 2. Anticonceptivos orales 23
- 3. Posparto 24-26
- 4. Complicaciones del embarazo 3,27-30
- 5. Asociado a infecciones 3,16-19
- 6. Formas familiares 20,21
- 7. Formas recurrentes 22
- 8. Formas hipocomplementémicas 34-36

Tratamiento. Todos los casos fueron tratados con hipotensores. Cuatro de los seis enfermos precisaron hemodiálisis. Unicamente una paciente recibió tratamiento anticoagulante y fibrinolítico con heparina y estreptocinasa durante dos semanas. Se interrumpió el tratamiento con motivo de un episodio de hemorragia gastrointestinal. Esta misma paciente fue binefrectomizada. Atypical hemolytic uremic syndrome and C3 glomerulopathy: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

Kidney Int. 2017; 91(3):539-551

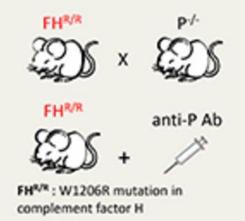

Table 2. TMA, Hematologic, and Kidney Disease Outcomes for Eculizumab in Adult Patients With aHUS, by 26 Weeks of Treatment

		,.,	
Primary and Secondary End Points	ITT Population (N = 41)	Dialysis ^a (n = 24)	No Dialysis ^a (n = 17)
Primary end point			
Complete TMA response ^b	30 (73%)	17 (71%)	13 (77%)
95% CI	57%-86%	49%-87%	50%-93%
TMA outcomes			
Modified complete TMA response ^b	23 (56%)	15 (63%)	8 (47%)
95% Cl	40%-72%	41%-81%	23%-72%
TMA event-free status ^b	37 (90%)	22 (92%)	15 (88%)
95% CI	77%-97%	73%-99%	64%-99%
Hematologic outcomes			
Platelet count normalization ^b	40 (98%)	23 (96%)	17 (100%)
95% CI	87%-100%	79%-100%	81%-100%
Change from baseline in platelet count, $ imes$ 10 3 / μ L (n = 27) $^\circ$	135 ± 114	163 ± 120	87 ± 88
	<i>P</i> < 0.001	P<0.001	<i>P</i> = 0.01
LDH normalization ^b	37 (90%)	23 (96%)	14 (82%)
95% CI	77%-97%	79%-100%	57%-96%
Hematologic normalization ^b	36 (88%)	22 (92%)	14 (82%)
95% CI	74%-96%	73%-99%	57%-96%
24 patients on dialysis	17 patie	ents not on	
at screening		at screening	
		-	
5 discontinue			
dialysis prior to first dose			
First dose		- <u>†</u>	
15 discontinue 4 remain or	n 📃	· ·	
dialysis before dialysis at	4 init	iate new	
83% week 26 week 26	di	alysis	
	2 discontinue	2 romain on	1
	dialysis before	2 remain on dialysis at	
Kidney Dis. 2016;68(1):84-93	week 26	week 26	

Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action

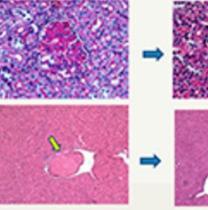
Ravulizumab

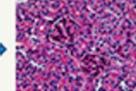
Ravulizumab (ALXN1210) in patients with paroxysmal nocturnal hemoglobinuria: results of 2 phase 1b/2 studies

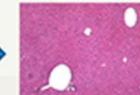


Blood Adv. 2018 Sep 11; 2(17): 2176–2185.

Blocking properdin prevents complement-mediated hemolytic uremic syndrome and systemic thrombophilia in mice


METHODS


Blocking of P function by genetic deletion or mAb inhibition in a murine model of aHUS (FH^{R/R})

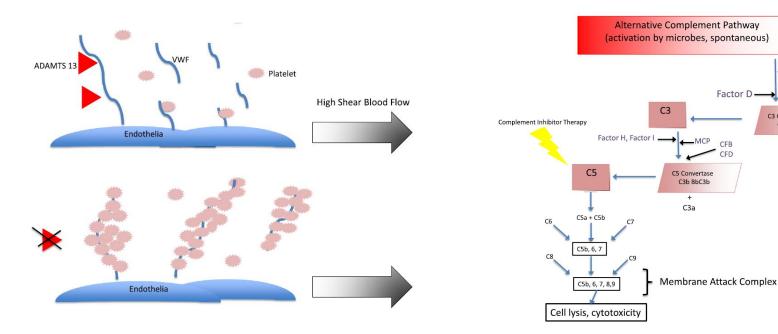


P: properdin, a positive regulator of the alternative pathway of complement activation P deficiency or anti-P mAb treatment rescued FH^{R/R} mice from lethal aHUS and systemic thrombophilia

OUTCOME

CONCLUSION

Properdin contributed critically to aHUS pathogenesis and its inhibition in this disease should have beneficial effect and be therapeutic.


JASN

Microangiopathic Hemolytic Anemia in Pregnancy

Lucy Neave ^a, Marie Scully ^{b,*}

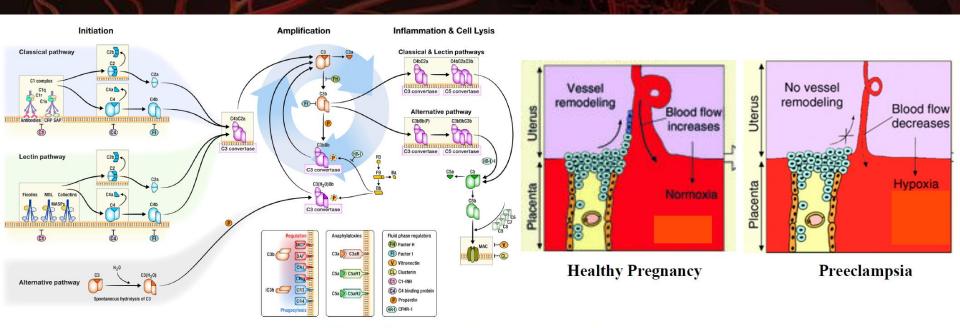
Causes of pregnancy-associated TMA

Pregnancy-associated TMA	TMA presenting in pregnancy
Hypertension of pregnancy	Lupus nephritis/SLE
Preeclampsia	Vasculitis
	APLS
HELLP syndrome	Sepsis
AFLP	Severe hemorrhage
Placental abruption	TTP
Undefined TMA	CM HUS

Transfusion Medicine Reviews xxx (2018) xxx-xxx

- Factor B

C3 Convertase


C3bBb

Factor D -

MCP CFB CFD

The Complement Alternative Pathway and Preeclampsia

Layan Alrahmani¹ • Maria Alice V. Willrich²

Mutations in Complement Regulatory ProteinsPredispose to Preeclampsia: A Genetic Analysis of thePROMISSE CohortPLoS Medicine March 2011 | Volume 8 | Issue 3 | e1001013

Jane E. Salmon¹*, Cara Heuser², Michael Triebwasser³, M. Kathryn Liszewski³, David Kavanagh⁴, Lubka Roumenina⁵, D. Ware Branch², Tim Goodship⁴, Veronique Fremeaux-Bacchi⁵, John P. Atkinson³

PROMISSE, a prospective study of 250 pregnant patients with SLE and/or APL Ab

40 patients who had preeclampsia and found heterozygous mutations in seven (18%)

Current Hypertension Reports (2018) 20:40

Factor H, membrane cofactor protein, and factor I mutations in patients with hemolysis, elevated liver enzymes, and low platelet count syndrome

Fadi Fakhouri,¹ Mathieu Jablonski,¹ Jacques Lepercq,² Jacques Blouin,³ Alexandra Benachi,⁴ Maryvonne Hourmant,⁵ Yves Pirson,⁶ Antoine Dürrbach,⁷ Jean-Pierre Grünfeld,¹ Bertrand Knebelmann,¹ and Véronique Frémeaux-Bacchi^{3,8}

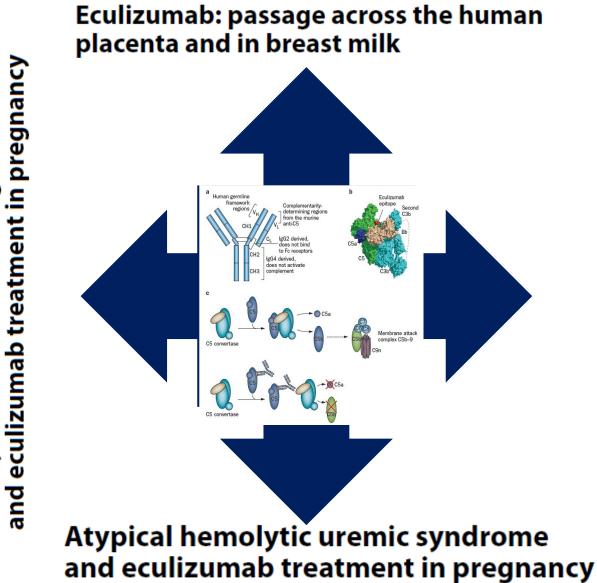

	C3,	C4,	CFB,	CFH,	CFI,	MCP,	Genetics		
Patient	mg/L	mg/L	mg/L	mg/L	mg/L	MFI	abnormality	Mutations	Mutation characteristics
1	829	304	144	719	88	nd	CFH	pArg303GIn	Located in the SCR-1/5 fragment of FH, which is important for cofactor, C3b-binding, and decay- accelerating activity
2	1020	232	135	657	75	791	CFI	pArg345Gln (c1034G>A)	Located near the previously reported mutation I322T; functional analysis revealed a marked defect in both C3b and C4b cofactor activity ¹⁰
3	899	217	127	540	70	359	CFI	pHist183Arg (c548A>G)	Located in the heavy chain domain that is important for C3b binding and the restriction of <i>CFI</i> ¹⁰
4	912	199	125	652	77	966	MCP	pAla304Val	A304V mutation leads to deficiency in MCP to control the alternative pathway of complement activation on a cell surface ¹¹
5	664	169	85	555	54	1096			
6	639	109	82	474	58	894			
7	976	245	75	836	99	906			
8	1150	254	151	714	60	nd			
9	779	231	125	591	67	968			
10	1170	354	150	759	72	985			
11	1150	314	156	708	84	1246			
Normal values	660-1250	93-320	90-320	338-682	42-78	600-1500			

Table 2. Plasma complement component level and molecular genetic abnormalities found in 11 patients with HELLP syndrome

Eculizumab in pregnancy: a narrative overview


Paroxysmal nocturnal hemoglobinuria

Laura Sarno¹ · Antonella Tufano² · Giuseppe Maria Maruotti¹ · Pasquale Martinelli¹ · Mario M. Balletta³ · Domenico Russo³

LP syndrome and eculizumab treatment. Ψ

The Role of Complement in C3 Glomerulopathy (C3G)

• Subepithelial "humps" may be seen in both DDD and C3GN

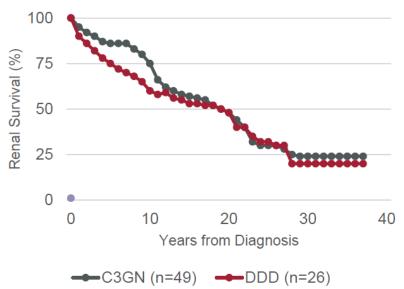
• DDD: Dense osmiophilic mesangial and intramembranous electron

 C3GN: Amorphous mesangial with or without capillary wall deposits including subendothelial, intramembranous and subepithelial

Typically dominant C3 staining

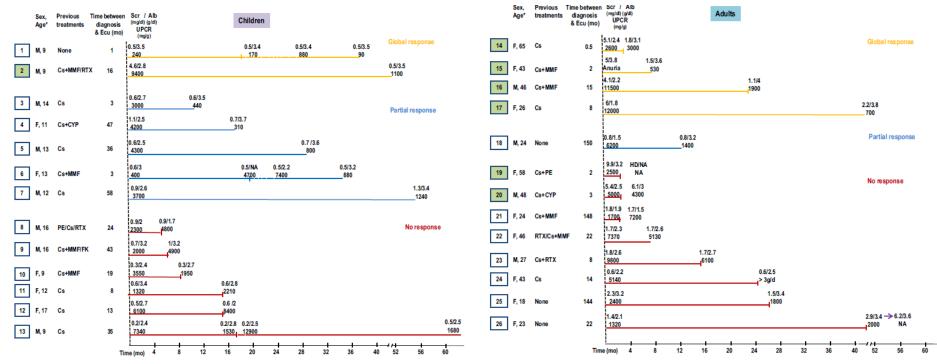
electron dense deposits

Electron microscopy


dense deposits

C3 Glomerulopathy (C3G)

- C3G
 - Dense deposit disease (DDD)
 - C3 glomerulonephritis (C3GN)
- Estimated prevalence of 8–12 people affected per million in major markets
 - Incidence rate of 1–2 per million patients diagnosed with C3G on an annual basis
- There are no approved treatments indicated for patients with C3G
 - Non-specific treatment approaches include blood pressure control and broad immunosuppression


DDD AND C3GN IMPACT ON RENAL SURVIVAL

Barbour et al. (2015); NICE C3G Evidence Summary (2015).

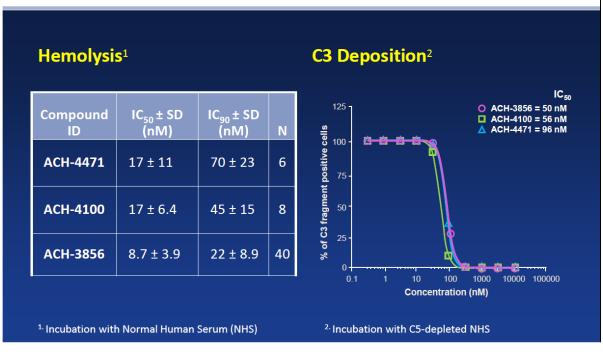
Patterns of Clinical Response to Eculizumab in Patients With C3 Glomerulopathy

Moglie Le Quintrec, Anne-Laure Lapeyraque, Arnaud Lionet, Anne-Laure Sellier-Leclerc, Yahsou Delmas, Véronique Baudouin, Eric Daugas, Stéphane Decramer, Leila Tricot, Mathilde Cailliez, Philippe Dubot, Aude Servais, Catherine Mourey-Epron, Franck Pourcine, Chantal Loirat, Véronique Frémeaux-Bacchi, and Fadi Fakhouri

Results: 26 patients (13 children/adolescents) were included. 22 (85%) patients had received steroids, plasma exchange, or immunosuppressive therapy before eculizumab, and 3 of them had rapid progression of their kidney disease despite treatment. At the initiation of eculizumab therapy, 11 (42%) patients had

chronic kidney disease, 7 (27%) had rapidly progressive disease, and 3 (12%) required dialysis. After eculizumab treatment (median duration, 14 months), 6 (23%) patients had a global clinical response; 6 (23%), a partial clinical response; and 14 (54%), no response.

Am J Kidney Dis. 2018 Feb 8

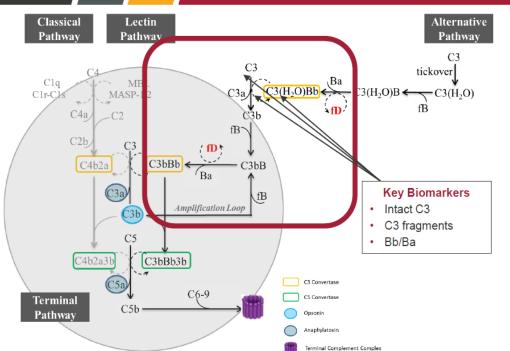

ChemoCentryx Reports Improvement in Renal Physiology and Stabilization of Kidney Function Following Treatment with Orally Administered Complement Inhibitor CCX168 (Avacopan) in Patient with Refractory C3 Glomerulopathy

Controlled Trial Evaluating Avacopan in C3 Glomerulopathy

NIH U.S. National Library of Medicine

ClinicalTrials.gov

Dose-dependent Inhibition of Hemolysis and C3 Deposition on Rabbit Erythrocytes

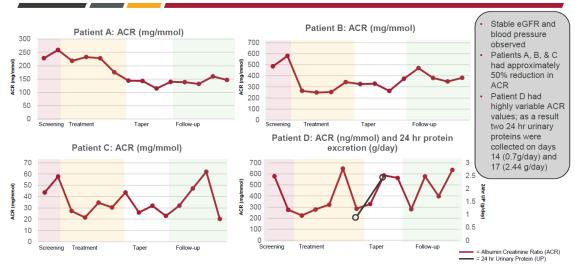


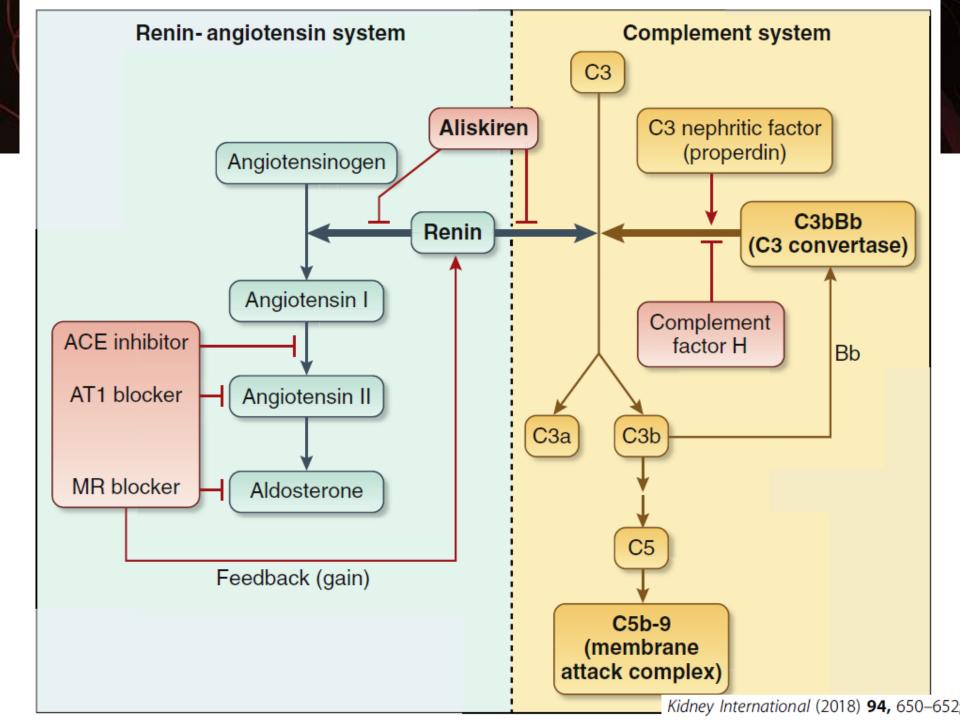
A Proof of Concept Study for a 12 Month Treatment in Patients With C3 Glomerulopathy (C3G) or Immune-Complex Membranoproliferative Glomerulonephritis (IC-MPGN)

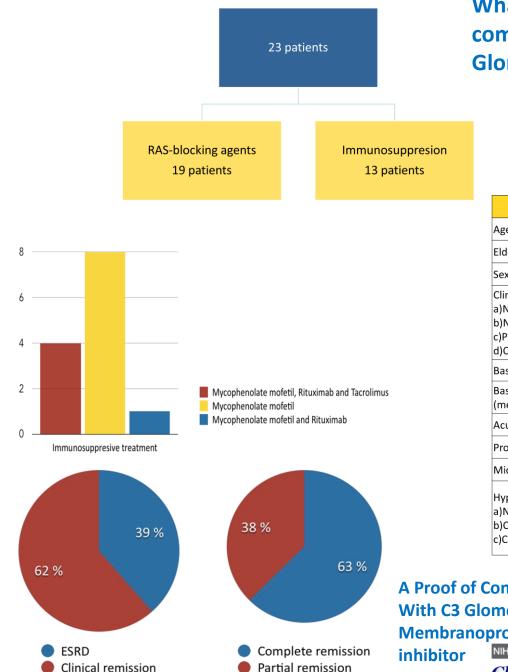
IIH U.S. National Library of Medicine

ClinicalTrials.gov

Factor D Inhibitor for the Treatment of C3G


C3G: A Disease of Alternative Pathway (AP) Hyperactivity


- Increased consumption of intact C3
- · Excess production of C3 fragments
- · C3 fragments deposited in glomeruli


ACH-4471: An AP Inhibitor

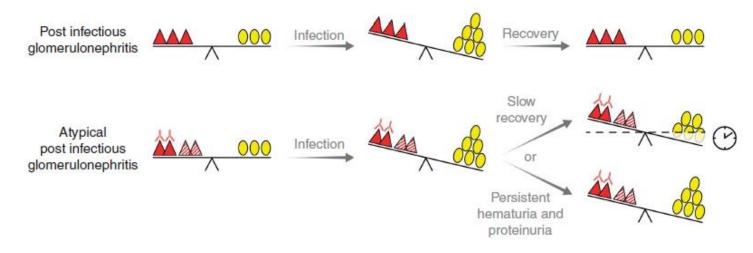
- ACH-4471 is the first drug designed to target the underlying pathophysiology of C3G
- ACH-4471 inhibits factor D, selectively reducing AP activity
- Reduction of AP hyperactivity should prevent further glomerular C3 deposition

Reduction in ACR with 14-Day ACH-4471 Treatment

What is the best treatment for Immunecomplex mediated Membranoproliferative Glomerulonephritis?

	n=23
Age, years (mean, SD)	41± 25 (10-81)
Elderly patients (> 65 years)	26 %
Sex (male/female) (%)	56.5/43.5%
Clinical presentation, n (%) a)Nephrotic syndrome b)Nephritic syndrome c)Proteinuria d)Other	14 (60.8%) 2 (8.7%) 5 (21.7%) 2 (8.7%)
Baseline SCr (mg/dl) (mean, SD)	1.4 ± 0.82 (0.60-3.66)
Baseline eGFR-MDRD (ml/min/1.73m ²) (mean, SD)	73 ± 39.8 (12.1-142)
Acute kidney injury (%)	48 %
Proteinuria (g/day) (mean, SD)	4.3 ± 3.1 (0.10-12.0)
Microhaematuria (%)	100 %
Hypocomplementemia, n (%) a)No b)C3 c)C3 and C4	8 (38.1%) 6 (28.6%) 7 (33.3%)

A Proof of Concept Study for a 12 Month Treatment in Patients With C3 Glomerulopathy (C3G) or Immune-Complex Membranoproliferative Glomerulonephritis (IC-MPGN). Factor D


Interview Conterview Conterv

ClinicalTrials.gov

Morales E et al, unpublished

Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement

Sanjeev Sethi¹, Fernando C. Fervenza², Yuzhou Zhang³, Ladan Zand², Nicole C. Meyer³, Nicolò Borsa³, Samih H. Nasr¹ and Richard J.H. Smith^{3,4,5}

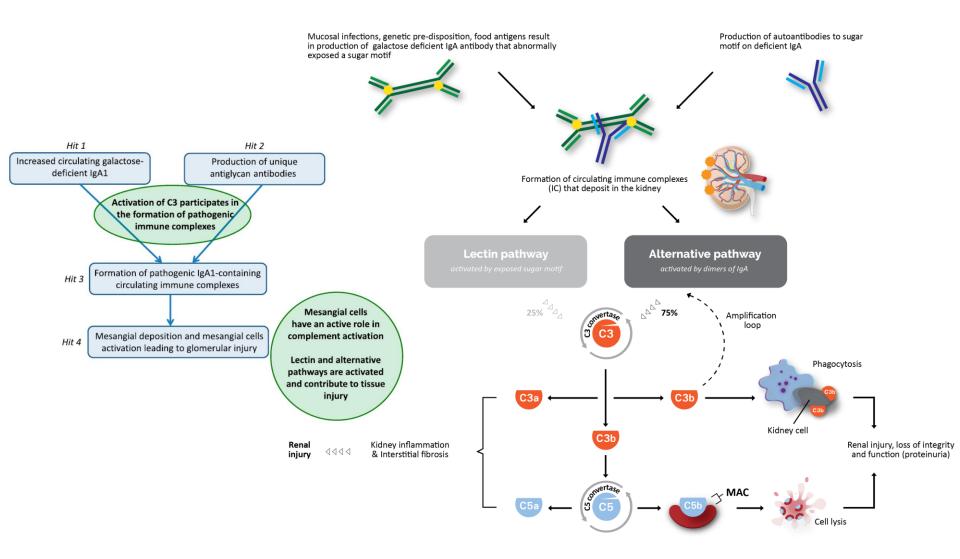
Table 3 | Complement abnormalities

Patient	CFH	CFHR5	FH antibodies ^a	Hemolytic assay ^b	APFA ^c	C3NeF	sMAC ^d
1	c.2171delC, p.Thr724fsX, 725	No mutations	Negative	ND	ND	Negative	0.24 mg/l
2	No mutations	c.646-647, AA>TT, p.Asn216Phe	Negative	0%, Normal	63%, Abnormal	Negative	0.21 mg/l
3	No mutations	No mutations	Negative	1%, Normal	63%, Abnormal	Positive (C3CSAP ^e)	ND
4	No mutations	No mutations	Negative	0%, Normal	1% Abnormal	Positive (IFE)	1.23 mg/l
5	No mutations	No mutations	Negative	12% Abnormal	34% Abnormal	Positive (IFE)	0.48 mg/l
6	No mutations	No mutations	Negative	0%, Normal	14% Abnormal	Positive (both assays)	ND
7	c.3350A>G, p.Asn1117Ser	No mutations	Negative	0% Normal	80%	Negative	ND
8	No mutations	No mutations	Negative	0% Normal	123%	Negative	0.13 mg/l
9	No mutations	No mutations	Negative	9% Abnormal	77%	Positive (both assays)	ND
10	c.1699A > G, p.Arg567Gly	No mutations	Negative	0%, Normal	0% Abnormal	Positive (both assays)	2.03 mg/l
11	No mutations	No mutations	Negative	0%, Normal	130%	Positive (C3CSAP)	0.21 mg/l

Kidney International (2013) 83, 293-299;

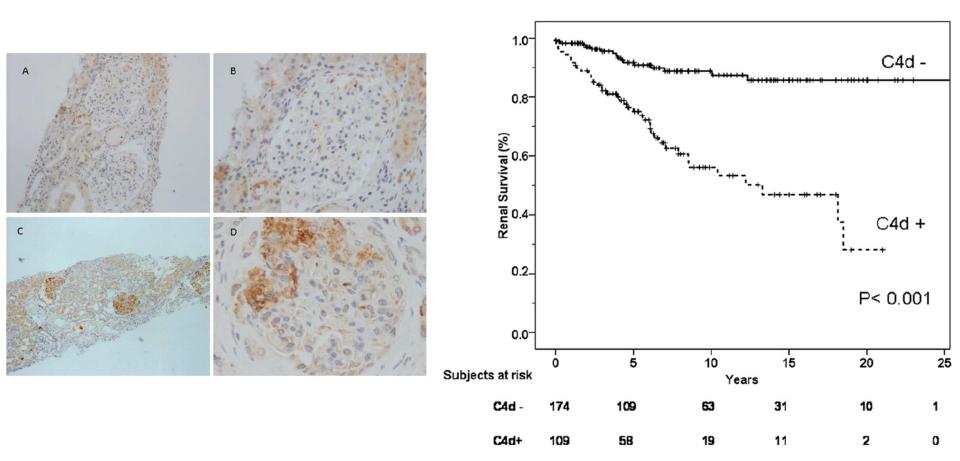
Thrombotic microangiopathy associated with monoclonal gammopathy

Aishwarya Ravindran¹, Ronald S. Go¹, Fernando C. Fervenza² and Sanjeev Sethi³


Table 5 | Treatment and renal outcomes at follow-up of patients with TMA and monoclonal gammopathy

146 TMA Patient Therapy		Time to final follow-up (months)	Serum creatinine (mg/dl) at diagnosis	eGFR at diagnosis	Serum creatinine at final follow-up mg/dl	eGFR at final follow-up	κ/λ ratio at final follow-up
1	TPE/steroid/rituxin	nab 302.4	6.0	10	1.1	>60	35.6
2	13,7% TPE/steroid	60.4	1.2	>60	1.0	>60	0.41
3	Steroid	8.1	1.3	42	2.8	17 ^a	1.29
4	Eculizumab ^b /sterc cyclophosphamide/bo lenalidomide	rtezomib-	1.7	41	1.4	52	1.16
5	TPE/dialysis	. 12.2	14	3	1.6	44	2.94
6	Thalidomide/steroid/o		1.2	>60	On dialysis	On dialysis	1.27
7	TPE/steroid, rituximab, cyclo IVIG, MMF/dialy	phosphamide, 119.0	7.4	2	Posttransplantation	Posttransplantation	0.46
8	TPE/rituximab, steroid, Ñ bortezomib/dial	1MF, IVIG, 69.2	5	12	On dialysis	On dialysis	1.36
9	Dialysis	16.8	6.5	6	Posttransplantation	Posttransplantation	2.24
10	TPE/dialysis	53.2	5.1	9	On dialysis	On dialysis	NA
11	TPE/dialysis	1.4	8.4	6	On dialysis	On dialysis	0.03
12	None	0.3	1.8	39	1.7	42	NA
13	TPE/steroid, cyclophospha azathioprine, rituximab/dialy	,	2.0	28	On dialysis	On dialysis	0.65
14	TPE/rituximab, ste	roid 27.1	0.7	>60	1.0	55	NA
15	Steroid	1.7	4.8	12	4.8	12 ^c	NA
16	Steroid	8.9	2.3	29	2.1	32	32.0
17	Dialysis	55.0	2.1	23	On dialysis	On dialysis	1.61
18	TPE/dialysis	160.8	3.5	13	0.8	>60	NA
19	Rituximab, cyclophospham	nide, steroid 27.7	2.2	30	2.1	31	1.61
20	TPE/steroid, rituximab,	dialysis 29.5	5.7	10	On dialysis	On dialysis	7.75

(2 TTP, 9 aHUS, Unclassified)


Kidney International (2016)

The Role of Complement in IgA Nephropathy (IgAN)

Association of C4d Deposition with Clinical Outcomes in IgA Nephropathy

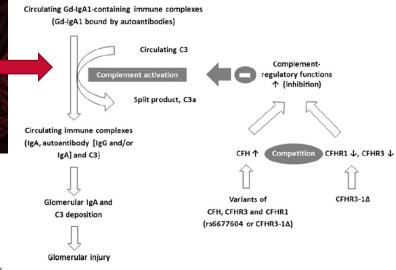
283 patients with IgAN

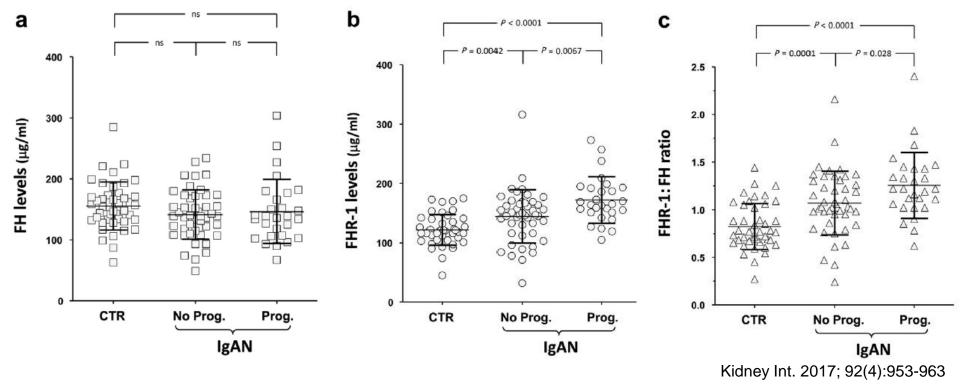
Clin J Am Soc Nephrol 9: 897–904, 2014

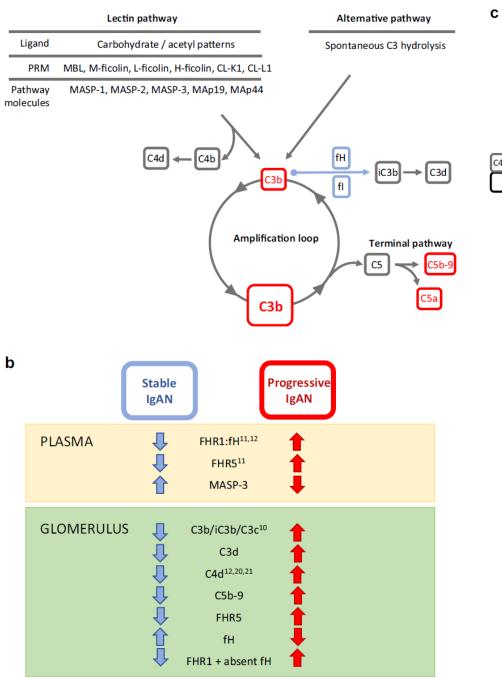
Mesangial C4d Deposits in Early IgA Nephropathy

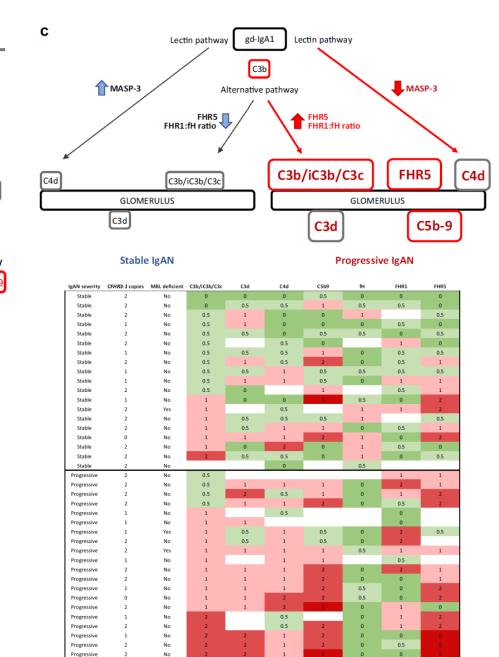
Alfons Segarra,* Katheryne Romero,* Irene Agraz,* Natalia Ramos,* Alvaro Madrid,[†] Clara Carnicer,[‡] Elias Jatem,[§] Ramón Vilalta,[†] Luis Enrique Lara,[†] Elena Ostos,[§] Naiara Valtierra,[§] Juliana Jaramillo,* Karla V. Arredondo,* Gema Ariceta,[†] and Cristina Martinez^{||}

Design, setting, participants, & measurements This retrospective cohort study included 190 patients with idiopathic IgA nephropathy diagnosed by kidney biopsy between 1988 and 2005. The patients had GFR \geq 80 ml/min per 1.73 m² at the time of diagnosis, and they had a paraffin-embedded kidney biopsy with eight glomeruli available.


Maniahlar	Cox Multivariate	Analysis
Variables	HR (95% CI)	<i>P</i> Value
Basal eGFR	0.69 (0.57 to 0.84)	< 0.001
Smoking	1.04 (1.01 to 1.06)	0.04
Time-averaged proteinuria	3.12 (1.97 to 4.95)	< 0.001
C4d+	2.07 (1.16 to 3.71)	0.02


Baseline eGFR is in milliliters per minute per 1.73 m², smoking is yes or no, time-averaged proteinuria is in grams per gram, and C4d positive is versus C4d negative. HR, hazard ratio; 95% CI, 95% confidence interval.


Variants in Complement Factor H and Complement Factor H-Related Protein Genes, *CFHR3* and *CFHR1*, Affect Complement Activation in IgA Nephropathy


Elevated factor H-related protein 1 and factor H pathogenic variants decrease complement regulation in IgA nephropathy

Agustín Tortajada^{1,11}, Eduardo Gutiérrez^{2,11}, Elena Goicoechea de Jorge^{3,11}, Jaouad Anter¹, Alfons Segarra⁴, Mario Espinosa⁵, Miquel Blasco⁶, Elena Roman⁷, Helena Marco⁸, Luis F. Quintana⁶, Josué Gutiérrez³, Sheila Pinto¹, Margarita Lopez-Trascasa⁹, Manuel Praga^{2,10} and Santiago Rodriguez de Córdoba¹

1

1

Progressive

Progressive Progressive

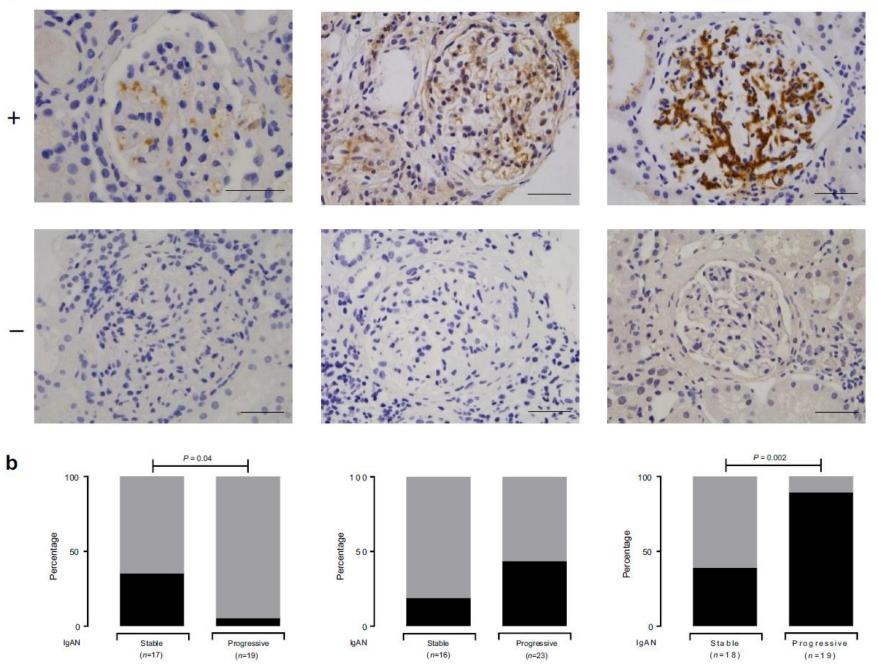
Progressive

2

2

2

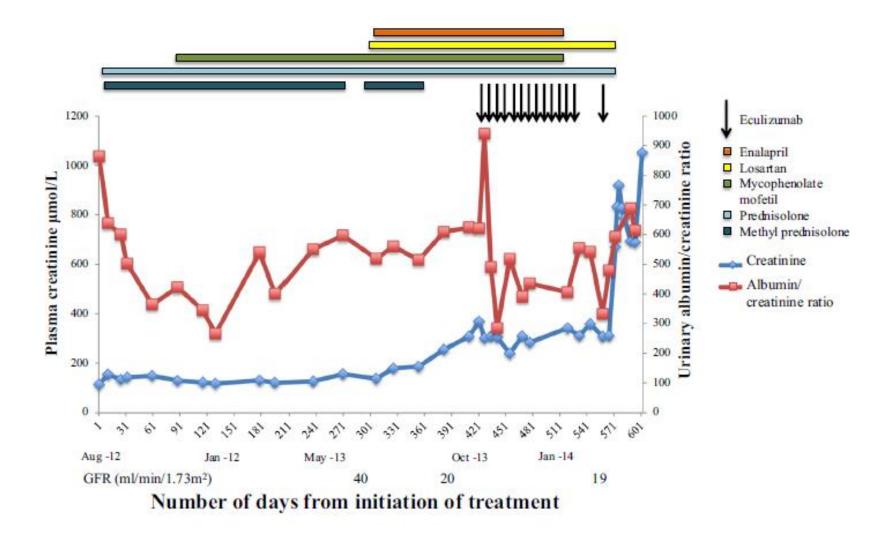
No


No

No

Kidney Int Rep (2018) 3, 426-438

0


0.5

Kidney Int Rep (2018) 3, 426-438

Eculizumab treatment for rescue of renal function in IgA nephropathy

Therese Rosenblad • Johan Rebetz • Martin Johansson • Zivile Békássy • Lisa Sartz • Diana Karpman

Pediatr Nephrol (2014) 29:2225-2228

Pipeline behind Marketed OMIDRIA®								OMEROS		
Program (Product)	Molecule	Targeted Disease / Procedure	Pre- clinical	Phase 1	Phase 2	Phase 3	FDA Approval	Economic Rights		
Clinical Programs										
MASP-2 / Lectin Pathway (OMS721)	Ab	Atypical Hemolytic Uremic Syndrome								
MASP-2 / Lectin Pathway (OMS721)	Ab	IgA Nephropathy	-			-				
MASP-2 / Lectin Pathway (OMS721)	Ab	Stem Cell Transplant-Associated TMA	_					1		
MASP-2 / Lectin Pathway (OMS721)	Ab	Lupus Nephritis & Other Renal Diseases	-		>			A		
PDE10 (OM5824)	S M	Huntington's and Schizophrenia	-		-			OMEROS		
PPARy (OMS405)	SM	Opioid and Nicotine Addiction	-		>					
Urology (OMS201)	S M	Ureteroscopy	-		-					
Preclinical Programs							90 S 112			
PDE7 (OMS527)	S M	Addictions and Compulsive Disorders; Movement Disorders								
MASP-3 / Alternative Pathway (OMS906)	Ab	PNH and a Wide Range of Other Alternative Pathway Disorders	-							
Plasmin (OMS616)	Protein	Surgical and Traumatic Bleeding								
MASP-2, MASP-3, MASP-2/3 and C-1 / Classical Pathway	S M	Disorders of Lectin, Alternative and Classical Pathways of Complement	-					OMEROS		
GPR17, GPR101, GPR151, GPR161, GPR174, GPR183	S M	Demyelinating Disorders; Eating Disorders; Pain; Breast Cancer; Immuno-oncology; Osteoporosis & EBV	-							
GPCR Platform	S M	CNS, Metabolic, CV, Oncologic, Musculoskeletal & Other Disorders	*							
Antibody Platform	Ab	Metabolic, CV, Oncologic, Musculoskeletal & Other Disorders	1							

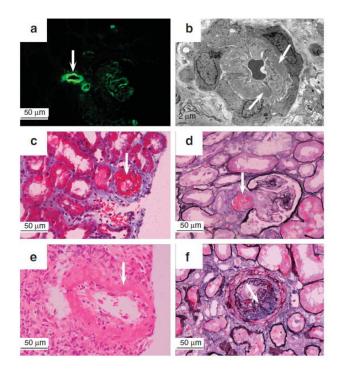
Study of the Safety and Efficacy of OMS721 in Patients With Immunoglobulin A (IgA) Nephropathy NIH U.S. National Library of Medicine

ClinicalTrials.gov

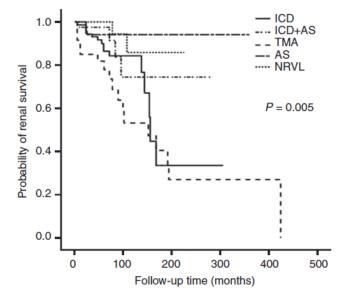
NIH U.S. National Library of Medicine


ClinicalTrials.gov

Study of Safety and Efficacy of LNP023 in Patients With Kidney Disease Caused by Inflammation (IgA nephropathy)


ClinicalTrials.gov Identifier: NCT03373461

- Female and male patients above 18 years of age with a **biopsy-verified IgA nephropathy** and where the biopsy was performed within the prior three years.
- Patients must weigh at least 35 kg to participate in the study, and must have a body mass index (BMI) within the range of 15 38 kg/m2. BMI = Body weight (kg) / [Height (m)]2
- Measured Glomerular Filtration Rate (GFR) or estimated GFR (using the CKD-EPI formula) ≥30 mL/min per 1.73 m2
- Urine protein ≥1 g/24hr at screening and ≥0.75 g / 24h after the run- in period
- Vaccination against Neisseria meningitidis types A, C, Y and W-135 is required at least 30 days prior to first dosing with LNP023. Vaccination against N. meningitidis type B, S. pneumoniae and H. influenzae should be conducted if available and acceptable by local regulations, at least 30 days prior to first dosing with LNP023
- All patients must have been on supportive care including a maximally tolerated dose of ACEi or ARB therapy for the individual, antihypertensive therapy or diuretics for at least 90 days before dosing



Rheum Dis Clin N Am 44 (2018) 635–649

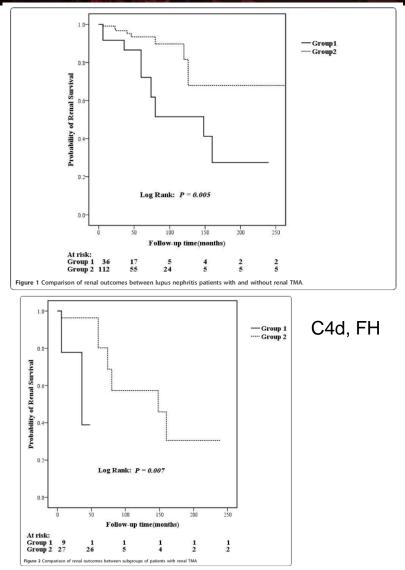
Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions

Li-Hua Wu^{1,2,4}, Feng Yu^{1,4}, Ying Tan¹. Zhen Ou¹. Mena-Hua Chen². Su-Xia Wana¹. Gana Liu¹ and Ming-Hui Zhao^{1,3}

350 patients (82%) vascular lessions

Table 2 Comparisons of clinical and laboratory data in patients with and without renal vascular lesions in lupus nephritis

	ICD	TMA	AS	ICD + AS	NRVL	P-value ^a
Number of patients	149	60	23	41	62	
Gender (male/female)	27/122	12/48	3/20	2/39	11/51	0.227
Age (mean \pm s.d.) (years)	32.7 ± 11.8	31.6 ± 10.8	33.2±8.5	36.3 ± 9.8	31.6±12.4	0.149
Number with hypertension (blood pressure ≥140/90 mm Hg) (%)	74 (49.7) * ^{,#}	44 (74.6) ^{▲,●}	9 (40.9)	24 (58.5)▼	22 (35.5)	< 0.001
Number with neurological disorder (%)	14 (9.4)	8 (13.3)	1 (4.3)	1 (2.4)	2 (3.2)	0.160
Number with anemia (%)	109 (73.2)#	51 (85.0) ^{▲,●}	13 (56.5)	29 (70.7)	27 (45.0)	< 0.001
Number with thrombocytopenia (%)	39 (26.2)	27 (45.0)	10 (43.5)	13 (31.7)	17 (28.3)	0.067
Number with hematuria (%)	119 (79.9)#	53 (88.3) ^{▲,●}	16 (69.6)	32 (78.0)	37 (59.7)	0.003
Number with acute renal failure (%)	28 (28.0)*	29 (60.4) ^{▲,▽,●}	3 (27.3)	5 (12.2)	7 (18.9)	< 0.001
SLEDAI (mean \pm s.d.)	17.9±5.5 ^{+,#}	18.9 ± 6.1 [,] ^ ,•	$13.7 \pm 3.9^{\circ}$	17.17 ± 4.99	15.8 ± 6.2	< 0.001
Hemoglobin (mean ± s.d.) (g/l)	100.6 ± 24.5* ^{,#}	87.1 ± 21.6 ^{▲,▽,●}	106.4 ± 33.5	102.2 ± 23.4♥	112.3 ± 21.7	< 0.001
Urine protein (mean and range) (g/24 h)	4.1* (2.2, 6.3)	5.9 (3.5, 8.3)	5.3 (1.6, 8.9)	5.0 (0.2, 17.3)	3.7 (1.9, 6.4)	0.028
Serum creatinine (mean and range) (µmol/l)	81.0**# (67.0, 114.5)	169.0 ^{▲,▽,●} (98.5, 287.8)	78.0 (65.0, 97.0)	103.9 [♥] (50.0, 280.0)	73.0 (59.0, 89.0)	< 0.001
C3 (mean \pm s.d.)	0.47 ± 0.23 ^{•,#}	0.41±0.19 ^{▲,●}	$0.59 \pm 0.21^{\circ}$	0.43 ± 0.26	0.54 ± 0.30	0.006
Number with positive ANA (%)	148 (99.3)	59 (98.3)	22 (95.7)	41 (100)	60 (96.8)	0.218
Number with positive anti-dsDNA antibodies (%)	111 (75.0) ^{◆,#}	44 (73.3) ^{▲,●}	10 (43.5)	25 (61.0)	28 (45.9)	< 0.001
Number with positive aCL antibodies (%)	9 (10.1)	1 (2.8)	1 (6.2)	3 (7.3)	5 (14.7)	0.467

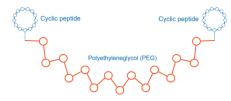

Kidney International (2013) 83, 715-723

The spectrum of renal thrombotic microangiopathy in lupus nephritis

Song et al. Arthritis Research & Therapy 2013, 15:R12

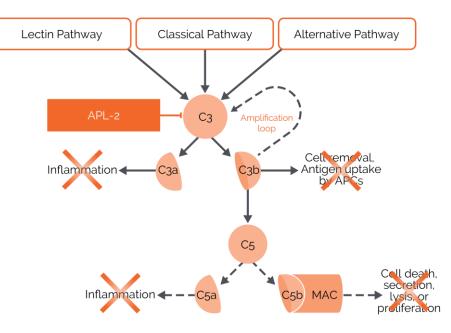
Table 5 Comparison of treatment data between lupus nephritis patients with and without renal TMA

	LN with renal TMA	LN without renal TMA	P-value
Number of	36	112	
patients (%)	24.3%		
Treatment	24.370		
PE (Number of patients (%))	19 (52.8)	7 (6.25)	<0.001
MP (Number of patients (%))	26 (72.2)	18 (16.1)	<0.001
Р	36 (100)	112 (100)	1
CYC	30 (83.3)	88 (78.6)	0.536
AZA	1 (2.8)	5 (4.5)	1
MMF	3 (83.3)	11 (9.8)	1
LEF	2 (5.6)	8 (7.1)	1
Treatment response			
CR	8 (22.2)	30 (26.8)	0.586
PR	12 (33.3)	65 (58.0)	0.01
TF	16 (44.4)	17 (15.2)	< 0.001
Duration of follow-up (m)	53 (6,240)	53 (6,282)	0.15
Relapse rate	4 (4/20, 20%, 3 with nephritic relapse and 1 with proteinuric relapse)	17 (17/95, 17.89%, 15 with nephritic relapse and 2 with proteinuric relapse)	0.543



Use of eculizumab in a systemic lupus erythemathosus patient presenting thrombotic microangiopathy and heterozygous deletion in CFHR1-CFHR3. A case report and systematic review

Maria Izabel de Holanda¹ · Luis Cristóvão Pôrto² · Teresa Wagner¹ · Luis Fernando Christiani¹ · Lilian M. P. Palma³

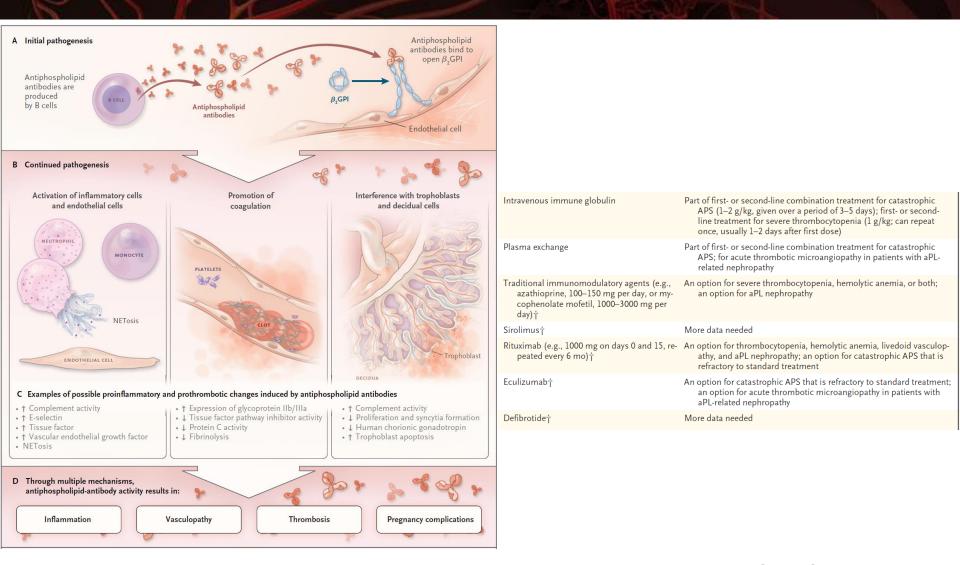

Case report studies	Gender	Ethnics	Age	Diag	TMAs (y/N)	Plx/session	RxMab	Igg	Time (days) of start ECU	Hemato resp	Renal resp	Genetics	STOP ECU/doses	Relapses
Hadaya et al. 2011 [13]	F	ND	27	SLE	N/in the graft	Y/8	Y/1 dose pre tx	N	12	Y	Y/21 days	No Mutation	Y/5	N
Shapira et al. 2012 [14]	Μ	ND	28	SLE/APS	Y	Y/60	Y	Y/5doses	300	Y	Y	ND	Ν	Ν
Canaud et al. 2013	F	Caribbean	36	SLE/APS	Y	Y/60	Ν	Ν	14	Y/10 days	Y/21 days	ND	Y/28	Ν
[15]	F	Caucasian	35	SLE/APS	Y	Y/14	Ν	Ν	14	Y/10 days	Y/14 days	ND	Y/9	Ν
	Μ	ND	33	SLE/APS	Y	Y/30	Ν	Ν	30	Y/10 days	Y/14 days	ND	Y/8	Ν
Kronbichleret al. 2014 [16]	F	ND	30	SLE/APS	Y	Y/12	Y/4 doses	N	35	Y	Ν	Mutation exon 13 C3 gene	Y/9	N
Strakhan et al. 2014 [8]	F	ND	36	APS	Y	Y/15	Ν	N	56	Y	Y	Not done	N/10	Ν
Lonze et al. 2014 [9]	ND	ND	51	APS	Y	Ν	Y/1 dose	Ν	-1	Y	Y	ND	N	Ν
	ND	ND	39	APS	Ν	Y/4 before	Y/1 dose	Ν	-1	Y	Y	ND	N	Ν
	ND	ND	38	APS	Ν	Y/4 before	Y/1 dose	Ν	-1	Y	Y	ND	N	Ν
Bakhtar et al. 2014 [18]	Μ	ND	26	SLE/APS	Y	Y/5	Ν	N	7	Y	Y	No Mutation	Ν	Ν
Coppo et al. 2014 [17]	F	Moroccan	4	SLE	Y	Y/9	Y/2 doses	Ν	60	Y/7 days	Y/21 days	No mutation	Y/relapse/continuous	Y
Zikos et al. 2015 [19]	Μ	ND	46	APS	Y	Y/24	Y/3 doses	Y/1dose	72	Y	Ν	No mutation	Y/35	Ν
Wig et al. 2015 [20]	F	ND	48	APS	Y	Y/120	Y/2 doses	Y/5doses	180	Y/42 days	NI	ND	N	Ν
El-Husseini et al. 2015 [21]	F	AA	24	SLE	Y	Y/8	Ν	N	37	Y	Y/14 days	Not done	Y/14	Ν
Pickering et al. 2015 [22]	F	Caucasian	17	SLE	N	N	Y/4 doses	N	300	Y	Y/30 days	Not done	Y/6	Ν
Raufi et al. 2016 [23]	F	Vietnamese	25	SLE	Y	Y/18	Y/2 doses	Ν	49	Y/56 days	Y/90 days	No mutation	ND	ND
Bermea et al. 2016 [24]	F	AA	30	SLE	Y	Y/5	Y/1 dose	Y/3 doses	200	Y/44 days	Ν	ND	Y/6	Ν
	Μ	Hispanic	21	SLE	Y	Y/20	Y/3 doses	Y/3 doses	40	Y/7 days	Ν	ND	Ν	Ν
Geethakumari et al. 2017 [25]	М	Caucasian	58	SLE/APS	Ν	Y/2	N	N	15	Y/60 days	Y/60 days	No mutation	Ν	N

Discovery (APL2-201): Phase 2 Clinical Trial of APL-2 Therapy in Patients with IgAN, LN, Primary MN, and C3G

A phase 2 study to evaluate the safety and biologic activity of APL-2 in patients with IgA nephropathy (IgAN), lupus nephritis (LN), primary membranous nephropathy (Primary MN), or C3 glomerulopathy (C3 glomerulonephritis or dense deposit disease)

APL-2 is a PEGylated cyclic peptide inhibitor of complement C3.

Objectives


This is a prospective, phase 2 open-label study, consisting of a single cohort with a total of approximately 48 subjects with a diagnosis of 1 of the 4 complement-mediated nephropathies: IgAN, LN, primary MN, or C3G (~12 subjects per disease).

The planned length of participation in the study for each subject is up to 52 weeks, including a screening period, a 16-week treatment period, and a 24-week follow-up period.

Primary Objective

The primary objectives of this study are to establish preliminary efficacy and safety of the investigational drug APL-2 in patients with IgAN, LN, primary MN, and C3G.

Diagnosis and Management of the Antiphospholipid Syndrome

Microangiopatía trombótica secundaria y eculizumab: una opción terapéutica razonable

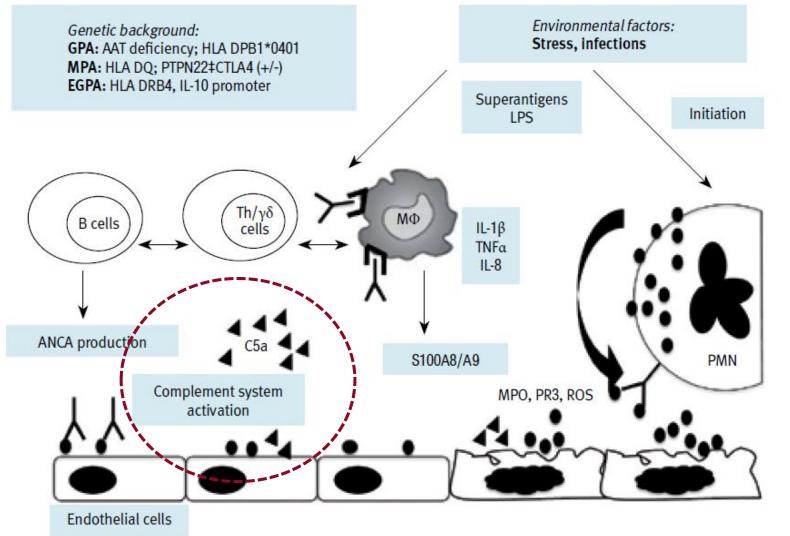
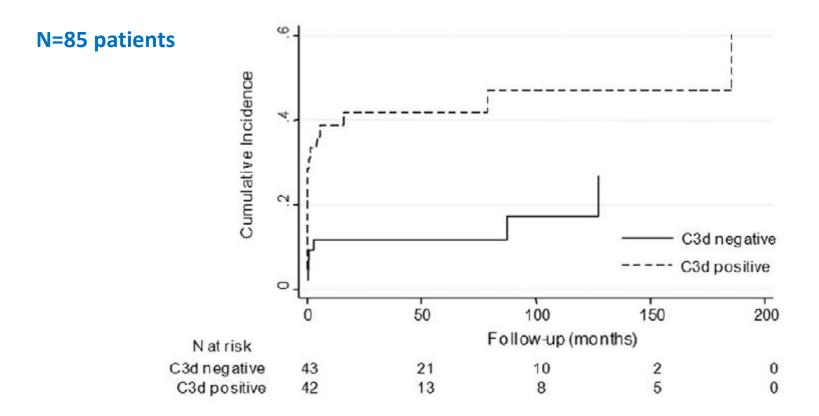

Elena Román^{a,*}, Santiago Mendizábal^a, Isidro Jarque^b, Javier de la Rubia^c, Amparo Sempere^b, Enrique Morales^d, Manuel Praga^d, Ana Ávila^e y José Luis Górriz^e

Tabla 3 – Utilización	de eculizumab en MAT p	ostrasplante de órgano	sólido	
Desencadenante	Ν	Duración del tratamiento	Resultado	Comentario
SAFC ²⁴	3	Continúan (1-4 años)	Estabilidad de función renal. Sin episodios de SAFC	Profilaxis de SAFC catastrófico. Inicio en el trasplante
SAFC ²⁵	1 (RP)	5 semanas	Resolución de la MAT y normalización de función renal a los 6 meses	Tratamiento de MAT 2.ª a SAF en el postrasplante
SAFC ²⁶	3 (RP)	3-12 meses	Resolución de la MAT y normalización de función renal	Respuesta rápida. Tras 2.ª dosis de eculizumab: resolución de MAT
SAFC ²⁷	1	7 meses	Resolución de la MAT	Lenta desaparición de MAT histológica
MAT postrasplante renopancreático ¹⁰²	1 (RP, reducción/retirada ICN)	2 semanas	Resolución de la MAT	Cese de diálisis tras la 1.ª dosis de eculizumab
MAT postrasplante cardiaco ¹⁰⁵	1 (RP, reducción/retirada ICN)	2 meses	Resolución de la MAT	Cese de diálisis, mejoría en función miocárdica y de alteraciones neurológicas
Trasplante intestinal (5) y hepático (2) ¹⁰³	7	4-107 semanas	Resolución de la MAT	Cese de diálisis en 3 de 4 pacientes
MAT postrasplante ¹⁰⁴	1 (RP, reducción/retirada ICN)	4 semanas	Resolución de la MAT	Respuesta tras 1.ª dosis de eculizumab, tras RP prolongado (18 sesiones)
MAT por ICN ¹⁰¹	1 (RP, reducción/retirada ICN)	Una semana	Resolución de la MAT	
MAT asociada a CMV ⁸⁸	1 (RP)	3 meses	Resolución de la MAT	

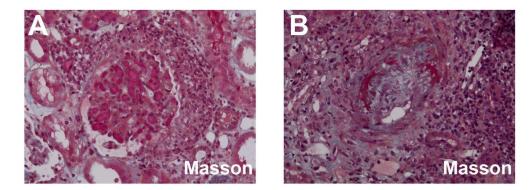
NEFROLOGIA 2017;37(5):478-491

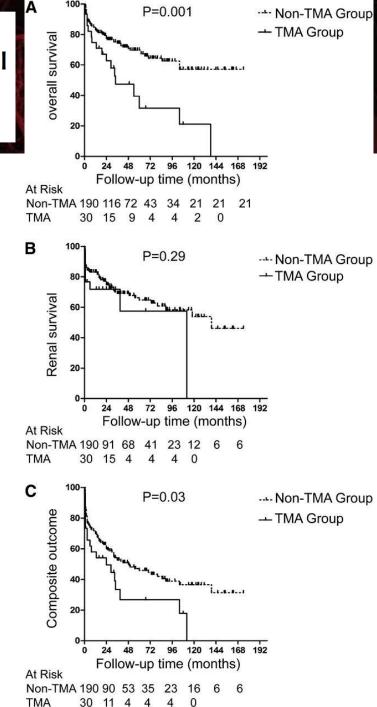
Small-Medium Vessel Vasculitides: is the Complement System a Potential Forgotten Target?


Eleonora Ballanti MD, Maria S. Chimenti MD PhD and Roberto Perricone MD

Isr Med Assoc J. 2015; 17(2):85-92.

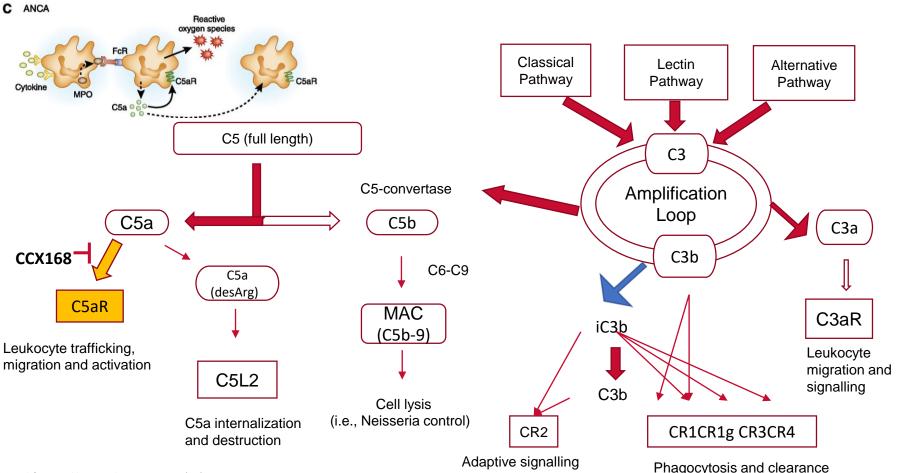
Glomerular C3d as a novel prognostic marker for renal vasculitis $\overset{\curvearrowleft}{\sim}$


Javier Villacorta MD^{a,*,1}, Francisco Diaz-Crespo MD^{b,1}, Mercedes Acevedo MD^c, Carmen Guerrero MD^d, Yolanda Campos-Martin PhD^b, Eugenio García-Díaz MD^c, Manuela Mollejo PhD^b, Gema Fernandez-Juarez PhD^a


Human Pathology (2016) **56**, 31–39

Clinicopathologic Characteristics and Outcomes of Renal Thrombotic Microangiopathy in Anti-Neutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis

220 patients with ANCA-vasculitis. In 30 of them (13.6%) marked TMA histological lesions. Patients with superimposed TMA: More severe AKI, greater number of crescents

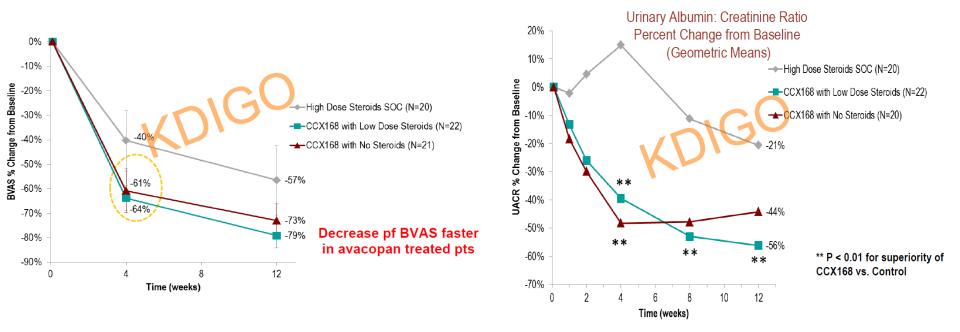


Su-Fang Chen et al. CJASN 2015;10:750-758

Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis

Mode of therapeutic action in AAV: C5aR inhibition By CCX168 will stop amplification of autoimmune neutrophil accumulation and activation at site of vascular inflammation

* Adapted from Bekker, et al; PLoS One 11(10):e0164646.


Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis

67 pts with AAV randomized to:

1) Standard of care (SOC) control: Placebo + CYC or RTX + full starting dose of prednisone (60 mg),

2) CCX168 30 mg b.i.d. + CYC or RTX + reduced starting dose of prednisone (20 mg), or

3) CCX168 30 mg b.i.d. + CYC or RTX + no prednisone.

Eculizumab in secondary atypical haemolytic uraemic syndrome

Table 3. aHUS associated with systemic disease

Patient	Age (years), gender	Systemic disease	Treatment before eculizumab	PE no. of sessions	Eculizumab (duration, no. of doses)	Time from aHUS to eculizumab (days)	Highest SCr (mg/dL) HD (Yes/No)	Latest SCr (mg/dL)	Follow-up (months)
16	51, female	SLE ^a	CS + Cyc + Rtx + PE	10	4 weeks, 4	31	4.2 Yes	Dialysis	0.9
17	16, female	SLE ^a	CS + MMF	-	10 weeks, 7	1	7.1 Yes	Dialysis	4.2
18	52, female	SLE	CS + Cyc + PE	27	2 weeks, 2	38	6.4 Yes	4.2	4.0
19	63, male	Scleroderma	CS + Cyc + PE	10	6 weeks, 5	55	4.9 No	Dialysis	12.9
20	56, male	Scleroderma	CS + Mtx + PE	10	8 weeks, 6	25	3.7 No	3.4	4.3
21	52, male	EGPA	CS + Cyc	-	16 weeks, 10	5	3.5 No	2.3	4.3
22	49, male	EGPA	CS + Cyc + PE	2	130 weeks, ongoing	15	6.5 Yes	Dialysis	29.5
23	38, male	Primary APS	-	-	14 weeks, 9	1	9.5 Yes	3.4	4.4

	Responders $(n = 20)$	Non-responders $(n = 9)$	Р
Age (years) ^a	47.4 (35.9–57.5)	51.9 (49.9-60.1)	0.57
Gender, no. (%), male	11 (55.0)	5 (55.6)	1
Baseline SCr (mg/dL) ^a	3.4 (2.8-4.5)	3.4 (1.8-6.2)	0.75
SCr at the onset of Eculizumab (mg/dL) ^{a,b}	3.8 (3.2-5.4)	4.5 (3.4-6.7)	0.82
Dialysis, no. (%) ^b	9 (45)	5 (55.6)	0.70
Haemoglobin (g/dL) ^{a,b}	9.0 (8.1-10)	8.3 (7.7–104)	0.65
Platelet count $(\times 1000/\mu L)^{a,b}$	78 (51–138)	61 (29-80)	0.25
Cause of aHUS, no. (%)			0.004
Systemic disease	2 (25)	6 (75)	
Drug induced	12 (80)	3 (20)	
Other causes	6 (100)	0 (0)	
Plasma exchange, no. (%)	17 (85)	7 (77.8)	0.50
Time between aHUS and eculizumab (days) ^a	9.5 (6-22.5)	25 (14–38)	0.059
Eculizumab duration (weeks) ^a	11.6 (4-24.7)	4.4 (3-8.4)	0.003

De novo thrombotic microangiopathy after kidney transplantation $\stackrel{\leftrightarrow}{}$

Neetika Garg^{a,*,1}, Helmut G. Rennke^b, Martha Pavlakis^a, Kambiz Zandi-Nejad^a

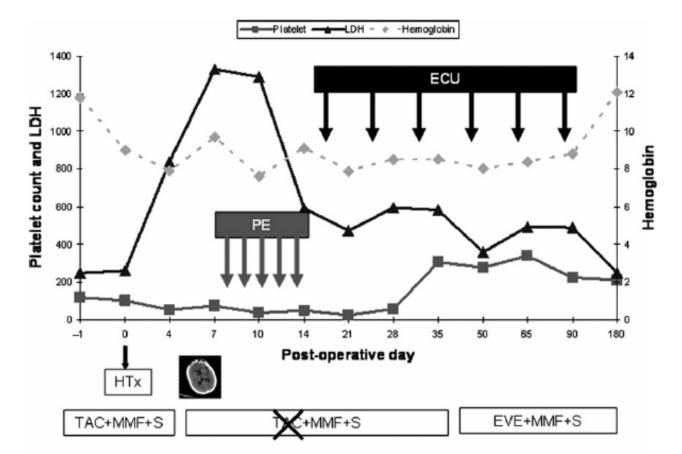
Classification of post-transplant TMA.

- 1. Recurrent TMA after transplantation
- Atypical hemolytic uremic syndrome
- Thrombotic thrombocytopenic purpura
- Autoimmune disorders and glomerulonephritis with previously documented TMA in native kidneys e.g. scleroderma and systemic lupus erythematosus, with or without anti-phospholipid antibodies
- 2. De novo TMA after transplantation
- Immunosuppressive medication associated TMA: Calcineurin inhibitor or mammalian target of rapamycin inhibitor or combination of the two
- · Antibody-mediated rejection associated TMA
- · Genetic, associated with complement regulatory gene abnormalities
- · Medication related e.g. anti-vascular endothelial growth factor inhibitors
- Viral infections, e.g. hepatitis C, cytomegalovirus, parvovirus and BK
- C3 glomerulopathies as cause of ESRD, where phenotypical shift to aHUS after transplantation can occur
- Recurrent TMA, where a native kidney biopsy is not pursued and TMA as cause of ESRD is not established

Patient Age (years), Offending drug Treatment before PE no. of Eculizumab Time from Highest SCr Latest SCr Follow-up gender eculizumab sessions (duration, aHUS to (mg/dL) HD (mg/dL)(months) no. of doses) eculizumab (Yes/No) (days) Tacrolimus^a 43, female DW + PE3 2 weeks, 2 4 3.8 No 1.1 16.2 1 63 female **Tacrolimus**^a DW + PE10 3.1 Yes 2.0 5.9 2 18 weeks, 11 53 3 34, male Tacrolimus^a PE 3 24 weeks, 14 10 9.8 Yes 2.6 6.7 Tacrolimus^a 18, female DW + PE2 3 weeks, 3 14 2.1 No 2 9.6 4 52, female Tacrolimus^a DW 8 weeks, 6 2.9 No 1.2 8.3 5 26 _ 43, male Tacrolimus^a DW + PE6 30 weeks, 17 35 3.8 Yes 1.1 16.2 6 36, female Everolimus^a 4.2 No DW + PE6 weeks, 5 2.1 17.5 7 6 9 Tacrolimus^b 60, male DW 4 weeks, 4 3.4 Yes 2.5 8 53 3.4 _ 9 67, male Tacrolimus, everolimus^b DW + PE6 6 weeks, 5 10 1.8 No 2.0 1.7 Tacrolimus, everolimus^b 10 59, male DW + PE5 10 weeks, 7 3.5 No 2.0 4.8 7 Tacrolimus, everolimus^b 11 65, male DW + PE6 2 weeks, 2 9 3.3 No 2.4 4.5 Tacrolimus^c 12 51, male DW + PE2 4 weeks, 4 10 2.4 No 0.6 2.9 13 Tacrolimus, sirolimus^c 54, female DW + PE7 3 weeks, 3 7 4.2 Yes 1.2 1.5 Tacrolimus^d 14 55, male DW + PE12 18 weeks, 11 27 3.0 No 2.4 14.1 Tacrolimus^e 15 42, female DW + PE3 3 weeks, 3 13 1.4 No 0.5 17.0

	Responders $(n = 20)$	Non-responders $(n = 9)$	Р
Age (years) ^a	47.4 (35.9–57.5)	51.9 (49.9-60.1)	0.57
Gender, no. (%), male	11 (55.0)	5 (55.6)	1
Baseline SCr (mg/dL) ^a	3.4 (2.8-4.5)	3.4 (1.8-6.2)	0.75
SCr at the onset of Eculizumab (mg/dL) ^{a,b}	3.8 (3.2-5.4)	4.5 (3.4-6.7)	0.82
Dialysis, no. (%) ^b	9 (45)	5 (55.6)	0.70
Haemoglobin (g/dL) ^{a,b}	9.0 (8.1-10)	8.3 (7.7–104)	0.65
Platelet count $(\times 1000/\mu L)^{a,b}$	78 (51–138)	61 (29-80)	0.25
Cause of aHUS, no. (%)			0.004
Systemic disease	2 (25)	6 (75)	
Drug induced	12 (80)	3 (20)	
Other causes	6 (100)	0 (0)	
Plasma exchange, no. (%)	17 (85)	7 (77.8)	0.50
Time between aHUS and eculizumab (days) ^a	9.5 (6-22.5)	25 (14-38)	0.059
Eculizumab duration (weeks) ^a	11.6 (4–24.7)	4.4 (3-8.4)	0.003

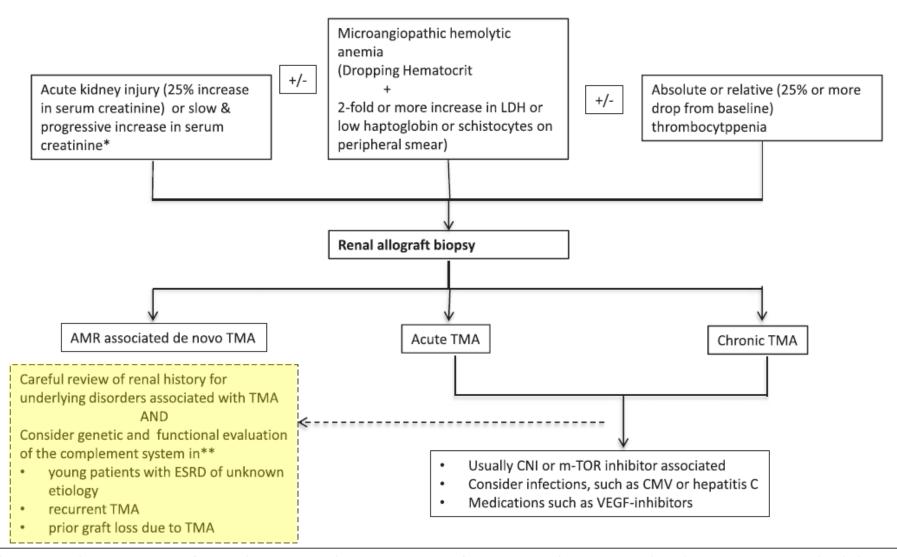
Table 2. Drug-induced aHUS


Cavero T et al. NDT 2017; 32:466-474

Transplant International ISSN 0934-0874

LETTER TO THE EDITORS

A case of thrombotic micro-angiopathy after heart transplantation successfully treated with eculizumab



Abbreviations: ECU, eculizumab; EVE, everolimus; HTx, heart transplantation; MMF, mycophenolate mofetil; PE, plasma exchange; S, steroids; TAC, tacrolimus.

> Enrique Morales, Cristina Rabasco, Eduardo Gutierrez and Manuel Praga

Steunstichting ESOT 28 (2015) 878-880

N. Garg et al. / Transplantation Reviews 32 (2018) 58-68

* Post-transplant de novo TMA frequently presents without any evidence of microangiopathic anemia or thrombocytopenia. Biopsy should be considered for acute kidney injury or slow progressive increase in serum creatinine in absence of another apparent cause.

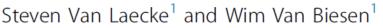
** While current evidence does not support evaluation of the complement system in all patients with de novo TMA, we recommend pursuing this in individuals where the diagnosis of aHUS may have been missed as the cause of ESRD, e.g. young patients where cause of ESRD is not known, those with recurrent TMA or those with history of prior graft losses from TMA.

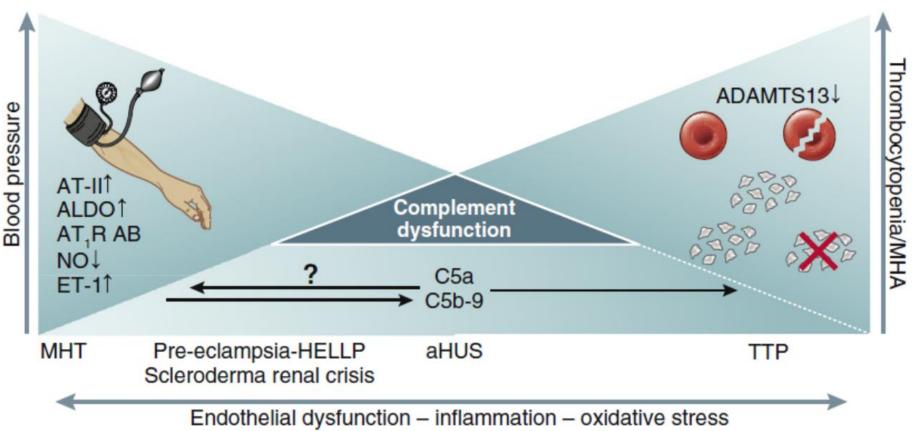
Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities Kidney Int

Kidney International (2017)


Patient No.	Age (yr)	Sex	BP (mm Hg)	SCr (µmol/l)	uProt (g/d)	uRBC	ESRD	Hb (mmol/l)	LDH (U/I)	MAHA ^a	Platelets (×10 ⁹ /l) ^b
1	38.4	F	184/140	1730	NA	NA	Y	5.1	1800	Y	224
2	40.3	М	205/114	1195	2.3	Y	Y	5.7	1104	Y	158
3	37.7	М	200/120	586	3.9	Y	Y	5.3	2125	Y	100
4	32.0	F	180/120	1138	NA	NA	Y	5.9	1486	Y	142
5	65.0	М	195/105	162	1.5	Y	N	7.9	271	N	98
6	41.1	F	180/120	334	0.7	Y	Y	7.5	291	N	285
7	28.5	F	224/122	1065	1.6	Y	Y	5.1	298	N	228
8	27.9	М	240/150	673	1.6	Y	Y	7.9	165	N	133
9	44.0	F	220/120	649	0.4	Υ	Y	8.2	339	Ν	340

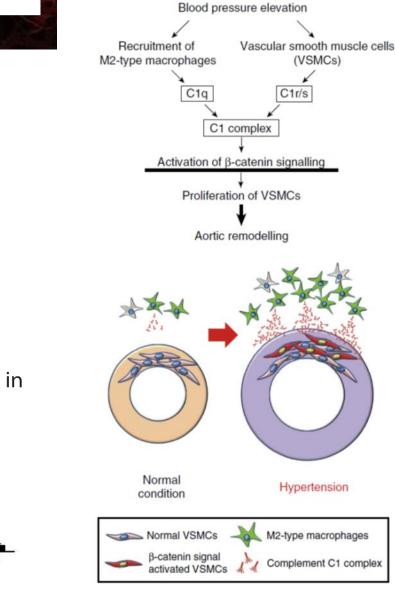
Table 1 | Baseline clinical features and laboratory evaluation


Table 2 | Complement abnormalities 67% genetic defects

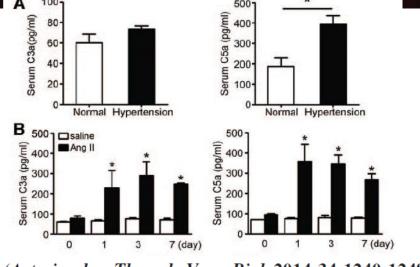

Patient No.	Mutation(s)	CFH-H3 ¹¹	FHAA	СР (%) ^а	АР (%) ^ь	sC5b-9 (ng/ml) ^c
1	C3-R161W ¹⁸	Ν	Negative	95	64	2800
2	CD46-ΔD237/S238, ¹⁵ CFH-Q950H ¹¹	Y	Negative	97	107	1000
3	C3-R161W ¹⁸	Y	ND	94	97	640
4	CFH-C853R ¹⁶	Y	ND	104	71	1840
5	No mutations	Ν	ND	99	99	1800
6	CFI-N151S ¹⁴	Ν	ND	97	87	4200
7	C3-R161W, ¹⁸ ΔCFHR1- CFHR3 ^d	Ν	Negative	110	62	1840
8	No mutations	Y	Negative	90	74	440
9	No mutations	Ν	Negative	113	110	3800

At the time of presentation, a clinical diagnosis of malignant nephrosclerosis was clinically inferred. In all patients, mild-to-moderate hypertensive retinopathy was found, and papilledema was observed in 1 case (no. 8). Indeed, 7 patients had a known medical history of hypertension, including 2 patients with documented episodes of preeclampsia (nos. 1, 7) and/or malignant hypertension (no. 7).

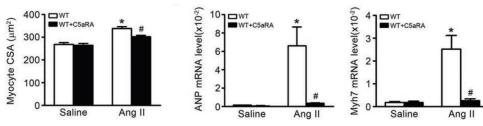
Severe hypertension with renal thrombotic microangiopathy: what happened to the usual suspect?



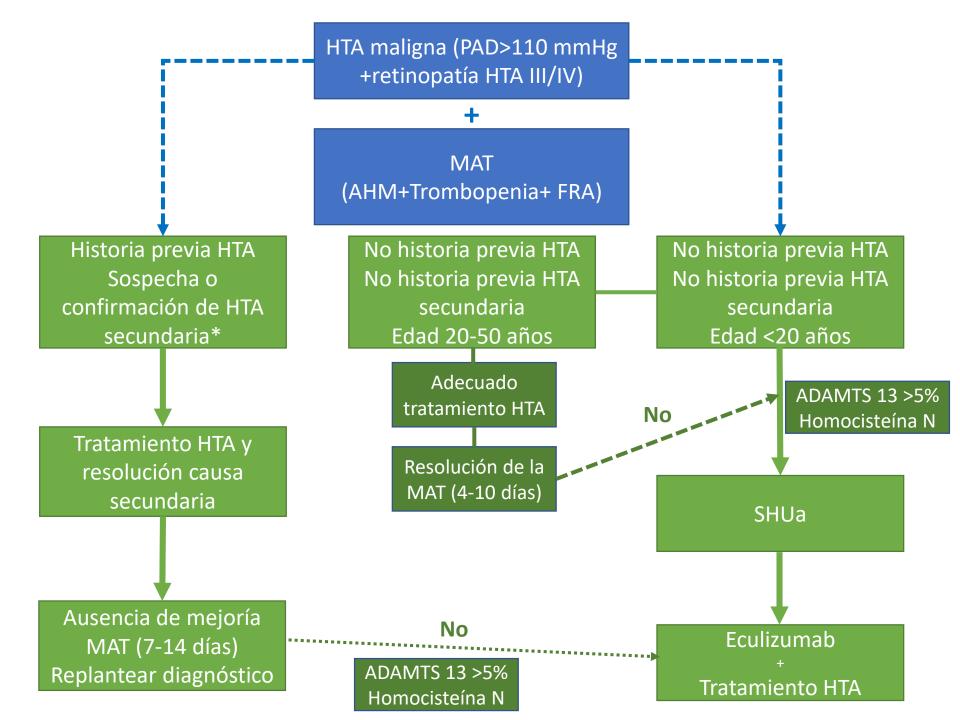
Endotheliopathies!!


Kidney International (2017) 91, 1271-1274;

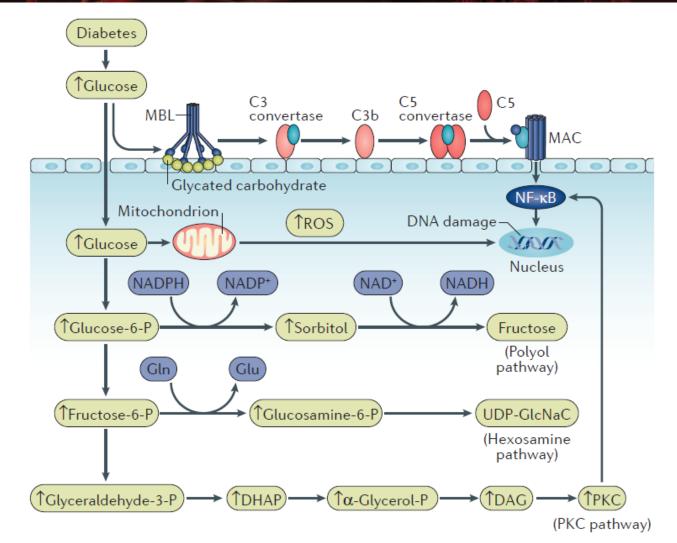
Complement C1q-induced activation of β -catenin signalling causes hypertensive arterial remodelling



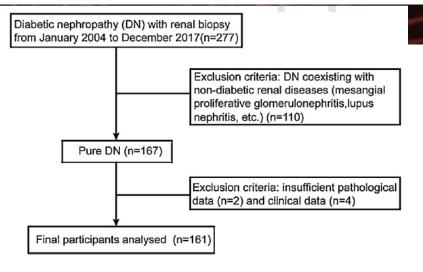
NATURE COMMUNICATIONS | 6:6241 | DOI: 10.1038/



(Arterioscler Thromb Vasc Biol. 2014;34:1240-1248.)


Antagonist of C5aR Prevents Cardiac Remodeling in Angiotensin II–Induced Hypertension

American Journal of Hypertension 27(6) June 2014



The role of the complement system in diabetic nephropathy

Nat Rev Nephrol 2017; 13(5):311-318

Complement deposition on renal histopathology of patients with diabetic nephropathy

In conclusion, deposition of C1q and C3c on renal histopathology evaluation was associated with more severe kidney damage in DM patients with DN. Nevertheless, further investigations are still needed to determine the precise role of complement in the development of DN

Table 3

Characteristics of patients according to C3c and/or C1q deposition.

Variables	Both C3c and C1q deposition	Only C1q deposition	Only C3c deposition	No C3c and C1q deposition
n (%)	38 (23.6)	6 (3.7)	51 (31.7)	66 (41.0)
Clinical characteristics				
Serum creatinine (µmol/L) ^b	219.95 (161.30-417.00)	151.35 (129.20-214.50)	181.50 (99.00-264.10)	126.92 (9660-194.20)
Urinary protein (g/24 h) ^b	7.04 ± 4.15	8.85 ± 4.70	5.29 ± 3.79	4.74 ± 3.75
eGFR (mL/min/1.73 m ²) ^{b,c}	32.09 ± 24.21	47.31 ± 29.76	46.06 ± 29.31	55.14 ± 32.87
Pathological characteristics				
Glomerular class (I/IIa/IIb/III/IV)	0/5/23/9/1	0/0/5/0/1	0/8/28/5/10	1/7/46/3/9
IFTA Score $(0/1/2/3)^{b}$	0/3/27/8	0/1/4/1	2/13/32/4	4/22/37/3
Interstitial inflammation Score (0/1/2)	0/9/29	0/2/4	1/19/31	7/22/37
Vascular lesion Score $(0/1/2)$	5/19/14	1/1/4	16/18/17	24/25/17
Global sclerosis (%) ^a	30.0% ± 21.0%	$26.0\% \pm 29.0\%$	30.0% ± 21.0%	20% ± 18%

Patient and target selection

- As complement therapeutics have been approved for the treatment of kidney diseases, awareness of the role of complement in these diseases has increased among nephrologists.
- As the number of **candidate drugs** in clinical pipelines increases, the choice of the **appropriate target** and corresponding drug will become ever more important.
- Identifying biomarkers or genetic profiles for selecting patients to be enrolled in clinical trials will become increasingly important.

All Things

omplement